70 resultados para Optics in computing
Resumo:
Standard Susceptible-Infected-Susceptible (SIS) epidemic models assume that a message spreads from the infected to the susceptible nodes due to only susceptible-infected epidemic contact. We modify the standard SIS epidemic model to include direct recruitment of susceptible individuals to the infected class at a constant rate (independent of epidemic contacts), to accelerate information spreading in a social network. Such recruitment can be carried out by placing advertisements in the media. We provide a closed form analytical solution for system evolution in the proposed model and use it to study campaigning in two different scenarios. In the first, the net cost function is a linear combination of the reward due to extent of information diffusion and the cost due to application of control. In the second, the campaign budget is fixed. Results reveal the effectiveness of the proposed system in accelerating and improving the extent of information diffusion. Our work is useful for devising effective strategies for product marketing and political/social-awareness/crowd-funding campaigns that target individuals in a social network.
Resumo:
In this paper, we design a new dynamic packet scheduling scheme suitable for differentiated service (DiffServ) network. Designed dynamic benefit weighted scheduling (DBWS) uses a dynamic weighted computation scheme loosely based on weighted round robin (WRR) policy. It predicts the weight required by expedited forwarding (EF) service for the current time slot (t) based on two criteria; (i) previous weight allocated to it at time (t-1), and (ii) the average increase in the queue length of EF buffer. This prediction provides smooth bandwidth allocation to all the services by avoiding overbooking of resources for EF service and still providing guaranteed services for it. The performance is analyzed for various scenarios at high, medium and low traffic conditions. The results show that packet loss is minimized, end to end delay is minimized and jitter is reduced and therefore meet quality of service (QoS) requirement of a network.
Resumo:
Coarse Grained Reconfigurable Architectures (CGRA) are emerging as embedded application processing units in computing platforms for Exascale computing. Such CGRAs are distributed memory multi- core compute elements on a chip that communicate over a Network-on-chip (NoC). Numerical Linear Algebra (NLA) kernels are key to several high performance computing applications. In this paper we propose a systematic methodology to obtain the specification of Compute Elements (CE) for such CGRAs. We analyze block Matrix Multiplication and block LU Decomposition algorithms in the context of a CGRA, and obtain theoretical bounds on communication requirements, and memory sizes for a CE. Support for high performance custom computations common to NLA kernels are met through custom function units (CFUs) in the CEs. We present results to justify the merits of such CFUs.
Resumo:
A time-dependent quantum mechanical (TDQM) method of wavepacket propagation in computing resonance Raman intensities for polyatomic systems, has been developed and demonstrated by applying it tocis-stilbene andtrans-azobenzene. In the case of the former, Raman excitation profiles (REPs) for the various vibrational modes have also been computed. It is observed that the calculated absorption spectrum and the REPs compare very well with the experimental results. A comparison of these results with those of the often semiclassical approach reveals that the TDQM method can be used to study polyatomic systems with as much ease as the semiclassical wavepacket method.
Resumo:
In this paper the implementation and application of a microprocessor-based medium speed experimental local area network using a coaxial cable transmission medium are dealt with. A separate unidirectional control wire has been used in order to provide a collision-free and fair medium access arbitration. As an application of the network, the design of a packet voice communication system is discussed.
Resumo:
We present a fast algorithm for computing a Gomory-Hu tree or cut tree for an unweighted undirected graph G = (V, E). The expected running time of our algorithm is (O) over tilde (mc) where vertical bar E vertical bar = m and c is the maximum u-v edge connectivity, where u, v is an element of V. When the input graph is also simple (i.e., it has no parallel edges), then the u-v edge connectivity for each pair of vertices u and v is at most n - 1; so the expected run-ning time of our algorithm for simple unweighted graphs is (O) over tilde (mn). All the algorithms currently known for constructing a Gomory-Hu tree [8, 9] use n - 1 minimum s-t cut (i.e., max flow) subroutines. This in conjunction with the current fastest (O) over tilde (n(20/9)) max flow algorithm due to Karger and Levine[11] yields the current best running time of (O) over tilde (n(20/9)n) for Gomory-Hu tree construction on simple unweighted graphs with m edges and n vertices. Thus we present the first (O) over tilde (mn) algorithm for constructing a Gomory-Hu tree for simple unweighted graphs. We do not use a max flow subroutine here; we present an efficient tree packing algorithm for computing Steiner edge connectivity and use this algorithm as our main subroutine. The advantage in using a tree packing algorithm for constructing a Gomory-Hu tree is that the work done in computing a minimum Steiner cut for a Steiner set S subset of V can be reused for computing a minimum Steiner cut for certain Steiner sets S' subset of S.
Resumo:
Some subtleties regarding regularizations in computing the soliton energy of degenerate systems are discussed.
Resumo:
The objective of this paper is to discuss some hardware and software features of an experimental network of 8080 and 8085 microcomputers named Micronet. The interprocessor communication in the ring network is established using ring interfaces consisting of universal synchronous-asynchronous receivers-transmitters (USARTs). Another aspect considered is the interfacing of an 8080 microcomputer to a PDP-11/35 minicomputer and the development of the software for the microcomputer-minicomputer link which has been established over a serial line using the USART interface of the microcomputer and the DZ11 module of the minicomputer. This is useful in developing a host-satellite configuration of microcomputers and the minicomputer.
Resumo:
Computer simulations have shown a novel geodesic splitting on the paraboloid of revolution leading to a multiplicity of surface ray paths. Such a phenomenon would have wide ramifications for wave propagation problems in general, besides applications in target-detection problems and the computational requirements of ray-theoretic formulations such as the UTD, in computing the antenna characteristics in the high-frequency domain.
Resumo:
In the knowledge-based clustering approaches reported in the literature, explicit know ledge, typically in the form of a set of concepts, is used in computing similarity or conceptual cohesiveness between objects and in grouping them. We propose a knowledge-based clustering approach in which the domain knowledge is also used in the pattern representation phase of clustering. We argue that such a knowledge-based pattern representation scheme reduces the complexity of similarity computation and grouping phases. We present a knowledge-based clustering algorithm for grouping hooks in a library.
Resumo:
Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed, A brief overview of Genetic Algorithms (GAs) and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance pf our GA-based approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger. To account for the relatively quick convergence of the gradient descent methods, we analyze the landscape of the COP-based cost function. We prove that the cost function is unimodal in the search space. This feature makes the cost function amenable to optimization by gradient-descent techniques as compared to random search methods such as Genetic Algorithms.
Resumo:
We present a fast algorithm for computing a Gomory-Hu tree or cut tree for an unweighted undirected graph G = (V,E). The expected running time of our algorithm is Õ(mc) where |E| = m and c is the maximum u-vedge connectivity, where u,v ∈ V. When the input graph is also simple (i.e., it has no parallel edges), then the u-v edge connectivity for each pair of vertices u and v is at most n-1; so the expected running time of our algorithm for simple unweighted graphs is Õ(mn).All the algorithms currently known for constructing a Gomory-Hu tree [8,9] use n-1 minimum s-t cut (i.e., max flow) subroutines. This in conjunction with the current fastest Õ(n20/9) max flow algorithm due to Karger and Levine [11] yields the current best running time of Õ(n20/9n) for Gomory-Hu tree construction on simpleunweighted graphs with m edges and n vertices. Thus we present the first Õ(mn) algorithm for constructing a Gomory-Hu tree for simple unweighted graphs.We do not use a max flow subroutine here; we present an efficient tree packing algorithm for computing Steiner edge connectivity and use this algorithm as our main subroutine. The advantage in using a tree packing algorithm for constructing a Gomory-Hu tree is that the work done in computing a minimum Steiner cut for a Steiner set S ⊆ V can be reused for computing a minimum Steiner cut for certain Steiner sets S' ⊆ S.
Resumo:
A general differential equation for the propagation of sound in a variable area duct or nozzle carrying incompressible mean flow (of low Mach number) is derived and solved for hyperbolic and parabolic shapes. Expressions for the state variables of acoustic pressure and acoustic mass velocity of the shapes are derived. Self‐consistent expressions for the four‐pole parameters are developed. The conical, exponential, catenoidal, sine, and cosine ducts are shown to be special cases of hyperbolic ducts. Finally, it is shown that if the mean flow in computing the transmission loss of the mufflers involving hyperbolic and parabolic shapes was not neglected, little practical benefit would be derived.
Resumo:
The setting considered in this paper is one of distributed function computation. More specifically, there is a collection of N sources possessing correlated information and a destination that would like to acquire a specific linear combination of the N sources. We address both the case when the common alphabet of the sources is a finite field and the case when it is a finite, commutative principal ideal ring with identity. The goal is to minimize the total amount of information needed to be transmitted by the N sources while enabling reliable recovery at the destination of the linear combination sought. One means of achieving this goal is for each of the sources to compress all the information it possesses and transmit this to the receiver. The Slepian-Wolf theorem of information theory governs the minimum rate at which each source must transmit while enabling all data to be reliably recovered at the receiver. However, recovering all the data at the destination is often wasteful of resources since the destination is only interested in computing a specific linear combination. An alternative explored here is one in which each source is compressed using a common linear mapping and then transmitted to the destination which then proceeds to use linearity to directly recover the needed linear combination. The article is part review and presents in part, new results. The portion of the paper that deals with finite fields is previously known material, while that dealing with rings is mostly new.Attempting to find the best linear map that will enable function computation forces us to consider the linear compression of source. While in the finite field case, it is known that a source can be linearly compressed down to its entropy, it turns out that the same does not hold in the case of rings. An explanation for this curious interplay between algebra and information theory is also provided in this paper.