105 resultados para Neonates, EEG Analysis, Fractal Dimensions, Signal Processing
Resumo:
We present a fractal coding method to recognize online handwritten Tamil characters and propose a novel technique to increase the efficiency in terms of time while coding and decoding. This technique exploits the redundancy in data, thereby achieving better compression and usage of lesser memory. It also reduces the encoding time and causes little distortion during reconstruction. Experiments have been conducted to use these fractal codes to classify the online handwritten Tamil characters from the IWFHR 2006 competition dataset. In one approach, we use fractal coding and decoding process. A recognition accuracy of 90% has been achieved by using DTW for distortion evaluation during classification and encoding processes as compared to 78% using nearest neighbor classifier. In other experiments, we use the fractal code, fractal dimensions and features derived from fractal codes as features in separate classifiers. While the fractal code is successful as a feature, the other two features are not able to capture the wide within-class variations.
Resumo:
We address the problem of recognition and retrieval of relatively weak industrial signal such as Partial Discharges (PD) buried in excessive noise. The major bottleneck being the recognition and suppression of stochastic pulsive interference (PI) which has similar time-frequency characteristics as PD pulse. Therefore conventional frequency based DSP techniques are not useful in retrieving PD pulses. We employ statistical signal modeling based on combination of long-memory process and probabilistic principal component analysis (PPCA). An parametric analysis of the signal is exercised for extracting the features of desired pules. We incorporate a wavelet based bootstrap method for obtaining the noise training vectors from observed data. The procedure adopted in this work is completely different from the research work reported in the literature, which is generally based on deserved signal frequency and noise frequency.
Resumo:
Western Blot analysis is an analytical technique used in Molecular Biology, Biochemistry, Immunogenetics and other Molecular Biology studies to separate proteins by electrophoresis. The procedure results in images containing nearly rectangular-shaped blots. In this paper, we address the problem of quantitation of the blots using automated image processing techniques. We formulate a special active contour (or snake) called Oblong, which locks on to rectangular shaped objects. Oblongs depend on five free parameters, which is also the minimum number of parameters required for a unique characterization. Unlike many snake formulations, Oblongs do not require explicit gradient computations and therefore the optimization is carried out fast. The performance of Oblongs is assessed on synthesized data and Western Blot Analysis images.
Resumo:
The notion of the 1-D analytic signal is well understood and has found many applications. At the heart of the analytic signal concept is the Hilbert transform. The problem in extending the concept of analytic signal to higher dimensions is that there is no unique multidimensional definition of the Hilbert transform. Also, the notion of analyticity is not so well under stood in higher dimensions. Of the several 2-D extensions of the Hilbert transform, the spiral-phase quadrature transform or the Riesz transform seems to be the natural extension and has attracted a lot of attention mainly due to its isotropic properties. From the Riesz transform, Larkin et al. constructed a vortex operator, which approximates the quadratures based on asymptotic stationary-phase analysis. In this paper, we show an alternative proof for the quadrature approximation property by invoking the quasi-eigenfunction property of linear, shift-invariant systems. We show that the vortex operator comes up as a natural consequence of applying this property. We also characterize the quadrature approximation error in terms of its energy as well as the peak spatial-domain error. Such results are available for 1-D signals, but their counter part for 2-D signals have not been provided. We also provide simulation results to supplement the analytical calculations.
Resumo:
This paper presents the formulation and performance analysis of four techniques for detection of a narrowband acoustic source in a shallow range-independent ocean using an acoustic vector sensor (AVS) array. The array signal vector is not known due to the unknown location of the source. Hence all detectors are based on a generalized likelihood ratio test (GLRT) which involves estimation of the array signal vector. One non-parametric and three parametric (model-based) signal estimators are presented. It is shown that there is a strong correlation between the detector performance and the mean-square signal estimation error. Theoretical expressions for probability of false alarm and probability of detection are derived for all the detectors, and the theoretical predictions are compared with simulation results. It is shown that the detection performance of an AVS array with a certain number of sensors is equal to or slightly better than that of a conventional acoustic pressure sensor array with thrice as many sensors.
Resumo:
Although many sparse recovery algorithms have been proposed recently in compressed sensing (CS), it is well known that the performance of any sparse recovery algorithm depends on many parameters like dimension of the sparse signal, level of sparsity, and measurement noise power. It has been observed that a satisfactory performance of the sparse recovery algorithms requires a minimum number of measurements. This minimum number is different for different algorithms. In many applications, the number of measurements is unlikely to meet this requirement and any scheme to improve performance with fewer measurements is of significant interest in CS. Empirically, it has also been observed that the performance of the sparse recovery algorithms also depends on the underlying statistical distribution of the nonzero elements of the signal, which may not be known a priori in practice. Interestingly, it can be observed that the performance degradation of the sparse recovery algorithms in these cases does not always imply a complete failure. In this paper, we study this scenario and show that by fusing the estimates of multiple sparse recovery algorithms, which work with different principles, we can improve the sparse signal recovery. We present the theoretical analysis to derive sufficient conditions for performance improvement of the proposed schemes. We demonstrate the advantage of the proposed methods through numerical simulations for both synthetic and real signals.
Resumo:
Complex biological systems such as the human brain can be expected to be inherently nonlinear and hence difficult to model. Most of the previous studies on investigations of brain function have either used linear models or parametric nonlinear models. In this paper, we propose a novel application of a nonlinear measure of phase synchronization based on recurrences, correlation between probabilities of recurrence (CPR), to study seizures in the brain. The advantage of this nonparametric method is that it makes very few assumptions thus making it possible to investigate brain functioning in a data-driven way. We have demonstrated the utility of CPR measure for the study of phase synchronization in multichannel seizure EEG recorded from patients with global as well as focal epilepsy. For the case of global epilepsy, brain synchronization using thresholded CPR matrix of multichannel EEG signals showed clear differences in results obtained for epileptic seizure and pre-seizure. Brain headmaps obtained for seizure and preseizure cases provide meaningful insights about synchronization in the brain in those states. The headmap in the case of focal epilepsy clearly enables us to identify the focus of the epilepsy which provides certain diagnostic value. Comparative studies with linear correlation have shown that the nonlinear measure CPR outperforms the linear correlation measure. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Event-triggered sampling (ETS) is a new approach towards efficient signal analysis. The goal of ETS need not be only signal reconstruction, but also direct estimation of desired information in the signal by skillful design of event. We show a promise of ETS approach towards better analysis of oscillatory non-stationary signals modeled by a time-varying sinusoid, when compared to existing uniform Nyquist-rate sampling based signal processing. We examine samples drawn using ETS, with events as zero-crossing (ZC), level-crossing (LC), and extrema, for additive in-band noise and jitter in detection instant. We find that extrema samples are robust, and also facilitate instantaneous amplitude (IA), and instantaneous frequency (IF) estimation in a time-varying sinusoid. The estimation is proposed solely using extrema samples, and a local polynomial regression based least-squares fitting approach. The proposed approach shows improvement, for noisy signals, over widely used analytic signal, energy separation, and ZC based approaches (which are based on uniform Nyquist-rate sampling based data-acquisition and processing). Further, extrema based ETS in general gives a sub-sampled representation (relative to Nyquistrate) of a time-varying sinusoid. For the same data-set size captured with extrema based ETS, and uniform sampling, the former gives much better IA and IF estimation. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Vehicular Ad-hoc Networks (VANET), is a type of wireless ad-hoc network that aims to provide communication among vehicles. A key characteristic of VANETs is the very high mobility of nodes that result in a frequently changing topology along with the frequent breakage and linkage of the paths among the nodes involved. These characteristics make the Quality of Service (QoS) requirements in VANET a challenging issue. In this paper we characterize the performance available to applications in infrastructureless VANETs in terms of path holding time, path breakage probability and per session throughput as a function of various vehicle densities on road, data traffic rate and number of connections formed among vehicles by making use of table-driven and on-demand routing algorithms. Several QoS constraints in the applications of infrastructureless VANETs are observed in the results obtained.
Resumo:
Wrist pulse signal contains more important information about the health status of a person and pulse signal diagnosis has been employed in oriental medicine since very long time. In this paper we have used signal processing techniques to extract information from wrist pulse signals. For this purpose we have acquired radial artery pulse signals at wrist position noninvasively for different cases of interest. The wrist pulse waveforms have been analyzed using spatial features. Results have been obtained for the case of wrist pulse signals recorded for several subjects before exercise and after exercise. It is shown that the spatial features show statistically significant changes for the two cases and hence they are effective in distinguishing the changes taking place due to exercise. Support vector machine classifier is used to classify between the groups, and a high classification accuracy of 99.71% is achieved. Thus this paper demonstrates the utility of the spatial features in studying wrist pulse signals obtained under various recording conditions. The ability of the model to distinguish changes occurring under two different recording conditions can be potentially used for health care applications.
Resumo:
It is well known that wrist pulse signals contain information about the status of health of a person and hence diagnosis based on pulse signals has assumed great importance since long time. In this paper the efficacy of signal processing techniques in extracting useful information from wrist pulse signals has been demonstrated by using signals recorded under two different experimental conditions viz. before lunch condition and after lunch condition. We have used Pearson's product-moment correlation coefficient, which is an effective measure of phase synchronization, in making a statistical analysis of wrist pulse signals. Contour plots and box plots are used to illustrate various differences. Two-sample t-tests show that the correlations show statistically significant differences between the groups. Results show that the correlation coefficient is effective in distinguishing the changes taking place after having lunch. This paper demonstrates the ability of the wrist pulse signals in detecting changes occurring under two different conditions. The study assumes importance in view of limited literature available on the analysis of wrist pulse signals in the case of food intake and also in view of its potential health care applications.
Resumo:
This paper studies a pilot-assisted physical layer data fusion technique known as Distributed Co-Phasing (DCP). In this two-phase scheme, the sensors first estimate the channel to the fusion center (FC) using pilots sent by the latter; and then they simultaneously transmit their common data by pre-rotating them by the estimated channel phase, thereby achieving physical layer data fusion. First, by analyzing the symmetric mutual information of the system, it is shown that the use of higher order constellations (HOC) can improve the throughput of DCP compared to the binary signaling considered heretofore. Using an HOC in the DCP setting requires the estimation of the composite DCP channel at the FC for data decoding. To this end, two blind algorithms are proposed: 1) power method, and 2) modified K-means algorithm. The latter algorithm is shown to be computationally efficient and converges significantly faster than the conventional K-means algorithm. Analytical expressions for the probability of error are derived, and it is found that even at moderate to low SNRs, the modified K-means algorithm achieves a probability of error comparable to that achievable with a perfect channel estimate at the FC, while requiring no pilot symbols to be transmitted from the sensor nodes. Also, the problem of signal corruption due to imperfect DCP is investigated, and constellation shaping to minimize the probability of signal corruption is proposed and analyzed. The analysis is validated, and the promising performance of DCP for energy-efficient physical layer data fusion is illustrated, using Monte Carlo simulations.
Resumo:
We establish zero-crossing rate (ZCR) relations between the input and the subbands of a maximally decimated M-channel power complementary analysis filterbank when the input is a stationary Gaussian process. The ZCR at lag is defined as the number of sign changes between the samples of a sequence and its 1-sample shifted version, normalized by the sequence length. We derive the relationship between the ZCR of the Gaussian process at lags that are integer multiples of Al and the subband ZCRs. Based on this result, we propose a robust iterative autocorrelation estimator for a signal consisting of a sum of sinusoids of fixed amplitudes and uniformly distributed random phases. Simulation results show that the performance of the proposed estimator is better than the sample autocorrelation over the SNR range of -6 to 15 dB. Validation on a segment of a trumpet signal showed similar performance gains.
Resumo:
Selection of relevant features is an open problem in Brain-computer interfacing (BCI) research. Sometimes, features extracted from brain signals are high dimensional which in turn affects the accuracy of the classifier. Selection of the most relevant features improves the performance of the classifier and reduces the computational cost of the system. In this study, we have used a combination of Bacterial Foraging Optimization and Learning Automata to determine the best subset of features from a given motor imagery electroencephalography (EEG) based BCI dataset. Here, we have employed Discrete Wavelet Transform to obtain a high dimensional feature set and classified it by Distance Likelihood Ratio Test. Our proposed feature selector produced an accuracy of 80.291% in 216 seconds.
Resumo:
The behaviour of the slotted ALOHA satellite channel with a finite buffer at each of the user terminals is studied. Approximate relationships between the queuing delay, overflow probabilities and buffer size are derived as functions of the system input parameters (i.e. the number of users, the traffic intensity, the transmission and the retransmission probabilities) for two cases found in the literature: the symmetric case (same transmission and retransmission probabilities), and the asymmetric case (transmission probability far greater than the retransmission probability). For comparison, the channel performance with an infinite buffer is also derived. Additionally, the stability condition for the system is defined in the latter case. The analysis carried out in the paper reveals that the queuing delays are quite significant, especially under high traffic conditions.