205 resultados para NO CO O-2
Resumo:
$CO_2^{-}$ ions have been detected in the gas phase and measured by a mass spectrometer with a flight time of 30 µs in the positive column of carbondioxide glow discharge.
Resumo:
The characterization and properties of trans-(X)-[RuX2(CO)(2)(alpha/beta-NaiPy)] (1, 2) (alpha-NaiPy (a), beta-NaiPy (b); X = Cl (1), I (2)) are described in this work. The structures are confirmed by single crystal X-ray diffraction studies. Reaction of these compounds with Me3NO in MeCN has isolated monocarbonyl trans-(X)-RuX2(CO)(MeCN)(alpha/beta-NaiPy)] (3, 4). The complexes show intense emission properties. Quantum yields of 1 and 2 (phi= 0.02-0.08) are higher than 3 and 4 (phi = 0.006-0.015). Voltammogram shows higher Ru(III)/Ru(II) (1.3-1.5 V) potential of 1 and 2 than that of 3 and 4 (0.8-0.9 V) that may be due to coordination of two pi-acidic CO groups in former. The electronic spectra and redox properties of the complexes are compared with the results obtained by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) using polarizable continuum model (CPCM).
Resumo:
Reactions of group 6 metal carbonyls with bis(pyrazolyl) phosphazenes yield metal tricarbonyl complexes, [M(CO)3.L] [L = N3P3Ph4 (3, 5-Me2C3HN2)2 (1) or N3P3(MeNCH2CH2O)2 (3,5-Me2C3HN2)2(4)]. The structure of the complex [Mo(CO)3.1], determined by single-crystal X-ray analysis, shows that the (pyrazolyl) phosphazene acts as a tridentate ligand; the two pyridinic pyrazolyl nitrogen atoms and a phosphazene ring nitrogen atom are coordinated to the metal. A similar structure is proposed for the complexes [M(CO)3.4] (M = Mo or W] on the basis of their spectroscopic data.
Resumo:
The reactions of the complexes [MI2(CO)3-(NCMe)2] (M = Mo, W) with the diphosphazane ligands RN{P(OPh)2}2 (R = Me, Ph) in CH2Cl2 at room temperature afford new seven-coordinated complexes of the type [MI2(CO)3{P(OPh)2}2NR]. The molybdenum complexes are sensitive to air oxidation even in the solid state, whereas the tungsten complexes are more stable in the solid state and in solution. The structure of the tungsten complex [WI2(CO)3{P(OPh)2}2NPh] has been determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system with the space group Pna 2(1), a = 19.372 (2) angstrom, b = 11.511 (1) angstrom, c = 15.581 (1) angstrom, and Z = 4. Full-matrix least-squares refinement with 3548 reflections (I > 2.5-sigma-(I)) led to final R and R(w) values of 0.036 and 0.034, respectively. The complex adopts a slightly distorted pentagonal-bypyramidal geometry rarely observed for such a type of complexes; two phosphorus atoms of the diphosphazane ligand, two iodine atoms, and a carbonyl group occupy the equatorial plane, and the other two carbonyl groups, the apical positions.
Resumo:
The reaction of imidazole (Him) with [Cu2(µ-O2CMe)4(H2O)2] in water–NaClO4 led to the formation of a polynuclear copper(II) complex, [Cu5(OH)2(H2O)(O2CMe)6(Him)4][ClO4]21, in which the pentanuclear units, showing four, five and six co-ordination geometries for the copper(II) centres and Cu Cu distances of 3.043(1), 3.178(1) and 3.578(1)Å, were linked by aqua bridges to give an intra-chain inter-unit Cu Cu separation of 4.507(1)Å.
Resumo:
A tripod ligand possessing two pyridine moieties and a phenolato group as pendants forms a mononuclear complex with an axial copper(II)–phenolate co-ordination in a square-pyramidal environment.
Resumo:
The reactions of the mononuclear cyclodiphosphazane complexes, cis-[Mo(CO)(4){cis-[PhNP(OR)](2)}(2)] with [Mo(CO)(4)(nbd)] (nbd = norbornadiene). [Mo(CO)(4)(NHC5H10)(2)] or [MCl(2)(cod)] (cod = cycloocta-1,5-diene) afforded the homobimetallic complexes; [Mo-2(CO)(8){mu-cis-[PhNP(OR)](2)}(2)] (R = C(5)H(4)Me-p 5 or CH2CF3 6) or the heterobimetallic complexes. [Mo-2(CO)(8){mu-cis-[PhNP(OE)](2)}(2)MCl(2)] (R = C(6)H(4)Me-p; M = Pd 7 or Pt 8). In all the above complexes, the two metal moieties are bridged by two cyclodiphosphazane ligands. The reactions of the mononuclear complexes, cis-[M(CO)(4)(A){cis-[PhNP(OC(6)H(4)Me-p)](2)}] with (M'Cl-2(cod)] afforded the trinuclear complexes, cis-[M'Cl-2[M(CO)(4)(A){cis-[PhNP(OC(6)H(4)Me-p)](2)}](2)] (M' = Pd, M = Mo, A = P(OMe)(3) 10; M' = Pt, M = Mo. A = P(OMe)(3) 11; M' = Pd. M = W. A = NHC5H10 12; M' = Pt, M = W. A = NHC5H10 13). The structure of the complex 5 has been determined by single-crystal X-ray crystallography.
Resumo:
The use of fac-[Mo(CO)(3)(MeCN)(eta(2)-L(1))] (1a) {L(1) = Ph(2)PN(Pr-i)PPh(DMP)}(2) as a precursor to metalloligands and bimetallic, heterotrimetallic, and heptacoordinated complexes is reported. The reaction of 1a with diphosphazane, dppa, or a diphosphinoalkane such as dppm or dppe yields the fac-eta(1)-diphosphine substituted metalloligands, fac-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-PXP)] {PXP = dppa (2), dppm (3), and dppe (4)}. These undergo isomerization to yield the corresponding mer-diphosphine complexes (5-7). Oxidation of the uncoordinated phosphorus atom of the mer-eta(1)-dppm-substituted complex eventually provides mer-[Mo(CO)(3)-(eta(2)-L(1)){eta(1)-Ph(2)PCH(2)P(O)Ph(2)}](8). The structure of the latter complex has been confirmed by single crystal X-ray diffraction {triclinic system, P ($) over bar 1; a = 11.994(3), b = 14.807(2), c = 15.855(3) Angstrom; alpha = 114.24(1), beta = 91.35(2), and gamma = 98.95(1)degrees; Z = 2, 4014 data (F-0 > 5 sigma(F-0)), R = 0.066, R(W) = 0.069}. Treatment of the dppe metalloligand 7 with [PtCl2(COD)] yields the heterotrimetallic complex cis-[PtCl2{mer-[Mo(CO)(3)(eta(2)-L(1))(eta(1)-dppe]}(2)] (9). Attempts to prepare a related trimetallic complex with the dppm-containing metalloligand were unsuccessful; only the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) and cis-[PtCl2(eta(2)-dppm)] were obtained. Reaction of la with dppe in the ratio 2:1 yields the mer-mer dinuclear complex [{mer-[Mo(CO)(3)(eta(2)-L(1))]}(2)(mu-dppe)] (10) bridged by dppe. Oxidation of 1a with iodine yields the Mo(II) heptacoordinated complex [MoI2(CO)(2)(eta(3)-L(1))] (11) with tridentate PPN coordination. The same Mo(II) complex 11 is also obtained by the direct oxidation of the tetracarbonyl complex cis-[Mo(CO)(4)(eta(2)-L(1))] (1b) with iodine. The structure of 11 has been confirmed by X-ray diffraction studies {monoclinic system, Cc; a = 10.471(2), b = 19.305(3), c = 17.325(3) Angstrom; beta = 95.47(2)degrees; Z = 4, 3153 data (F-0 > 5 sigma(F-0)), R = 0.049, R(W) = 0.051}. This complex exhibits an unusual capped-trigonal prismatic geometry around the metal. A similar heptacoordinated complex 12 with a chiral diphosphazane ligand {L(3) = (S,R)-P(h)2PN-(*CHMePh)*PPh(DMP)} has also been synthesized.
Resumo:
The compositional evolution in sputter deposited LiCoO(2) thin films is influenced by process parameters involved during deposition. The electrochemical performance of these films strongly depends on their microstructure, preferential orientation and stoichiometry. The transport process of sputtered Li and Co atoms from the LiCoO(2) target to the substrate, through Ar plasma in a planar magnetron configuration, was investigated based on the Monte Carlo technique. The effect of sputtering gas pressure and the substrate-target distance (d(st)) on Li/Co ratio, as well as, energy and angular distribution of sputtered atoms on the substrate were examined. Stable Li/Co ratios have been obtained at 5 Pa pressure and d(st) in the range 5 11 cm. The kinetic energy and incident angular distribution of Li and Co atoms reaching the substrate have been found to be dependent on sputtering pressure. Simulations were extended to predict compositional variations in films prepared at various process conditions. These results were compared with the composition of films determined experimentally using x-ray photoelectron spectroscopy (XPS). Li/Co ratio calculated using XPS was in moderate agreement with that of the simulated value. The measured film thickness followed the same trend as predicted by simulation. These studies are shown to be useful in understanding the complexities in multicomponent sputtering. (C) 2011 American Institute of Physics. doi:10.1063/1.3597829]
Resumo:
The thiocarbohydrazone Schiff-base ligand with a nitrogen and sulphur donor was synthesized through condensation of pyridine-2-carbaldehyde and thiocarbohydrazide. Schiff-base ligands have the ability to conjugate with metal salts. A series of metal complexes with a general formula [MCl(2)(H(2)L)]center dot nH(2)O (M=Ni, Co, Cu and Zn) were synthesized by forming complexes of the N(1),N5-bis[pyridine-2-methylene]thiocarbohydrazone (H2L) Schiff-base ligand. These metal complexes and ligand were characterized by using ultraviolet-visible (UV-Vis), Fourier Transform Infrared (FT-IR), (1)H and (13)C NMR spectroscopy and mass spectroscopy, physicochemical characterization, CHNS and conductivity. The biological activity of the synthesized ligand was investigated by using Escherichia coli DNA as target. The DNA interaction of the synthesized ligand and complexes on E. coli plasmid DNA was investigated in the aqueous medium by UV-Vis spectroscopy and the binding constant (K(b)) was calculated. The DNA binding studies showed that the metal complexes had an improved interaction due to trans-geometrical isomers of the complexes than ligand isomers in cis-positions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Noble metal ion substituted CeO(2) in the form of Ce(0.98)M(0.02)O(2-delta) solid solution (where M = Pt, Pd, Cu) are the new generation catalysts with applications in three-way exhaust catalysis. While adsorption of CO on noble metals ions is well-known, adsorption of CO on noble metal ions has not been studied because creating exclusive ionic sites has been difficult. Using first-principles density functional theory (DFT) we have shown that CO gets adsorbed on the noble metal Pt(2+), Pd(2+), Cu(2+) ionic sites in the respective compounds, and the net energy of the overall system decreases. Adsorption of CO on metal ions is also confirmed by Fourier transform infrared spectroscopy (FTIR).
Resumo:
A modified solution combustion technique was successfully used to synthesize sub-10 nm crystallites of hybrid CeO(2)-Al(2)O(3)-CeAlO(3). The fuel in the solution combustion was tuned to obtain mixed oxides and solid solutions of the compound. The compounds were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. XRD and TEM analysis showed the substitution of Al(3+) ions in the CeO(2) matrix when a combination of glycine, urea, hexamine and oxalyl dihydrazide was used as fuel for the synthesis. The compounds showed high activity for CO oxidation and the activity of the compounds was dependent upon the composition of the oxide.
Resumo:
Base metal substituted Sn(0.95)M(0.05)O(2-delta) (M = Cu, Fe, Mn, Co) catalysts were synthesized by the solution combustion method and characterized by XRD, XPS, TEM and BET surface area analysis. The catalytic activities of these materials were investigated by performing CO oxidation. The rates and the apparent activation energies of the reaction for CO oxidation were determined for each catalyst. All the substituted catalysts showed high rates and lower activation energies for the oxidation of CO as compared to unsubstituted SnO(2). The rate was found to be much higher over copper substituted SnO(2) as compared to other studied catalysts. 100% CO conversion was obtained below 225 degrees C over this catalyst. A bifunctional reaction mechanism was developed that accounts for CO adsorption on base metal and support ions and O(2) dissociation on the oxide ion vacancy. The kinetic parameters were determined by fitting the model to the experimental data. The high rates of the CO oxidation reactions at low temperatures were rationalized by the high dissociative chemisorption of adsorbed O(2) over these catalysts.