58 resultados para Motor vehicle design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150mm square, 20mm thick and uses SMA wire of 0·4mm diameter and 125mm of length in each phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common-mode voltage generated by the PWM inverter causes shaft voltage, bearing current and ground leakage current in induction motor drive system, resulting in an early motor failure. This paper presents a common-mode elimination scheme for a five-level inverter with reduced power circuit complexity. The proposed scheme is realised by cascading conventional two-level and conventional NPC three-level inverters in conjunction with an open-end winding three-phase induction motor drive and the common-mode voltage (CMV) elimination is achieved by using only switching states that result in zero CMV, for the entire modulation range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combining the newly developed nonlinear model predictive static programming technique with null range direction concept, a novel explicit energy-insensitive guidance design method is presented in this paper for long range flight vehicles, which leads to a closed form solution of the necessary guidance command update. Owing to the closed form nature, it does not lead to computational difficulties and the proposed optimal guidance algorithm can be implemented online. The guidance law is verified in a solid motor propelled long range flight vehicle, for which coming up with an effective guidance law is more difficult as compared to a liquid engine propelled vehicle (mainly because of the absence of thrust cutoff facility). Assuming the starting point of the second stage to be a deterministic point beyond the atmosphere, the scheme guides the vehicle properly so that it completes the mission within a tight error bound. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in burnout time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a robust fixed order H2controller design using strengthened discrete optimal projection equations, which approximate the first order necessary optimality condition. The novelty of this work is the application of the robust H2controller to a micro aerial vehicle named Sarika2 developed in house. The controller is designed in discrete domain for the lateral dynamics of Sarika2 in the presence of low frequency atmospheric turbulence (gust) and high frequency sensor noise. The design specification includes simultaneous stabilization, disturbance rejection and noise attenuation over the entire flight envelope of the vehicle. The resulting controller performance is comprehensively analyzed by means of simulation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A torque control scheme, based on a direct torque control (DTC) algorithm using a 12-sided polygonal voltage space vector, is proposed for a variable speed control of an open-end induction motor drive. The conventional DTC scheme uses a stator flux vector for the sector identification and then the switching vector to control stator flux and torque. However, the proposed DTC scheme selects switching vectors based on the sector information of the estimated fundamental stator voltage vector and its relative position with respect to the stator flux vector. The fundamental stator voltage estimation is based on the steady-state model of IM and the synchronous frequency of operation is derived from the computed stator flux using a low-pass filter technique. The proposed DTC scheme utilizes the exact positions of the fundamental stator voltage vector and stator flux vector to select the optimal switching vector for fast control of torque with small variation of stator flux within the hysteresis band. The present DTC scheme allows full load torque control with fast transient response to very low speeds of operation, with reduced switching frequency variation. Extensive experimental results are presented to show the fast torque control for speed of operation from zero to rated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As aircraft technology is moving towards more electric architecture, use of electric motors in aircraft is increasing. Axial flux BLDC motors (brushless DC motors) are becoming popular in aero application because of their ability to meet the demand of light weight, high power density, high efficiency and high reliability. Axial flux BLDC motors, in general, and ironless axial flux BLDC motors, in particular, come with very low inductance Owing to this, they need special care to limit the magnitude of ripple current in motor winding. In most of the new more electric aircraft applications, BLDC motor needs to be driven from 300 or 600 Vdc bus. In such cases, particularly for operation from 600 Vdc bus, insulated-gate bipolar transistor (IGBT)-based inverters are used for BLDC motor drive. IGBT-based inverters have limitation on increasing the switching frequency, and hence they are not very suitable for driving BLDC motors with low winding inductance. In this study, a three-level neutral point clamped (NPC) inverter is proposed to drive axial flux BLDC motors. Operation of a BLDC motor driven from three-level NPC inverter is explained and experimental results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A topology for voltage-space phasor generation equivalent to a five-level inverter for an open-end winding induction motor is presented. The open-end winding induction motor is fed from both ends by two three-level inverters. The three-level inverters are realised by cascading two two-level inverters. This inverter scheme does not experience neutral-point fluctuations. Of the two three-level inverters only one will be switching at any instant in the lower speed ranges. In the multilevel carrier-based SPWM used for the proposed drive, a progressive discrete DC bias depending on the speed range is given to the reference wave to reduce the inverter switchings. The drive is implemented and tested with a 1 HP open-end winding induction motor and experimental results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the design, fabrication and testing of a moving magnet type linear motor of dual piston configuration for a pulse tube cryocooler for ground applications. Eight radially magnetized segmented magnets were used to form one set of a magnet ring. Four magnet rings of such type were constructed, in which one pair of rings has north-pole on its outer diameter and south-pole on inner diameter, while the other pair is it's complementary. The magnets were mounted with opposite poles together on the magnet holder with an axial moving shaft having a piston mounted on both ends of the shaft. The shaft movement was restricted to the axial direction by using C-clamp type flexures, mounted on both sides of the shaft. The force requirement for driving the compressor was calculated based on which the electrical circuit of motor is designed by proper selection of wire gauge and Ampere-turns. The flexure spring force estimation was done through simulation using ANSYS 11.0 and was verified experimentally; while the magnet spring force was determined experimentally. The motor with mounted piston was tested using a variable voltage and variable frequency power supply capable of driving 140 watts of load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes an inverter circuit topology capable of generating multilevel dodecagonal (12-sided polygon) voltage space vectors by the cascaded connection of two-level and three-level inverters. By the proper selection of DC-link voltages and resultant switching states for the inverters, voltage space vectors whose tips lie on three concentric dodecagons, are obtained. A rectifier circuit for the inverter is also proposed, which significantly improves the power factor. The topology offers advantages such as the complete elimination of the fifth and seventh harmonics in phase voltages and an extension of the linear modulation range. In this study, a simple method for the calculation of pulse width modulation timing was presented along with extensive simulation and experimental results in order to validate the proposed concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a multilevel flying capacitor inverter topology suitable for generating multilevel dodecagonal space vectors for an induction motor drive, is proposed. Because of the dodecagonal space vectors, it has increased modulation range with the absence of all 6n +/- 1, (n=odd) harmonics in the phase voltage and currents. The topology, realized by flying capacitor three level inverters feeding an open-end winding induction motor, does not suffer the neutral point voltage imbalance issues seen in NPC inverters and the capacitors have inherent charge-balancing capability with PWM control using switching state redundancies. Furthermore, the proposed technique uses lesser number of power supplies compared to cascaded H-bridge or NPC based dodecagonal schemes and has better ride-through capability. Finally, the voltage control is obtained through a simple carrier-based space vector PWM scheme implemented on a DSP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A current-error space phasor based hysteresis controller with nearly constant switching frequency is proposed for a general n-level voltage source inverter fed three-phase induction motor drive. Like voltage-controlled space vector PWM (SVPWM), the proposed controller can precisely detect sub-sector changes and for switching it selects only the nearest switching voltage vectors using the information of the estimated fundamental stator voltages along α and β axes. It provides smooth transition between voltage levels, including operation in over modulation region. Due to adjacent switching amongst the nearest switching vectors forming a triangular sub-sector, in which tip of the fundamental stator voltage vector of the machine lies, switching loss is reduced while keeping the current-error space phasor within the varying parabolic boundary. Appropriate dimension and orientation of this parabolic boundary ensures similar switching frequency spectrum like constant switching frequency SVPWM-based induction motor (IM) drive. Inherent advantages of multi-level inverter and space phasor based current hysteresis controller are retained. The proposed controller is simulated as well as implemented on a 5-level inverter fed 7.5 kW open-end winding IM drive.