143 resultados para Modulus of Smoothness
Resumo:
Instability and dewetting engendered by the van der Waals force in soft thin (<100 nm) linear viscoelastic solid (e. g., elastomeric gel) films on uniform and patterned surfaces are explored. Linear stability analysis shows that, although the elasticity of the film controls the onset of instability and the corresponding critical wavelength, the dominant length-scale remains invariant with the elastic modulus of the film. The unstable modes are found to be long-wave, for which a nonlinear long-wave analysis and simulations are performed to uncover the dynamics and morphology of dewetting. The stored elastic energy slows down the temporal growth of instability significantly. The simulations also show that a thermodynamically stable film with zero-frequency elasticity can be made unstable in the presence of physico-chemical defects on the substrate and can follow an entirely different pathway with far fewer holes as compared to the viscous films. Further, the elastic restoring force can retard the growth of a depression adjacent to the hole-rim and thus suppress the formation of satellite holes bordering the primary holes. These findings are in contrast to the dewetting of viscoelastic liquid films where nonzero frequency elasticity accelerates the film rupture and promotes the secondary instabilities. Thus, the zero-frequency elasticity can play a major role in imposing a better-defined long-range order to the dewetted structures by arresting the secondary instabilities. (C) 2011 American Institute of Physics. doi: 10.1063/1.3554748]
Resumo:
Scattering of coherent light from scattering particles causes phase shift to the scattered light. The interference of unscattered and scattered light causes the formation of speckles. When the scattering particles, under the influence of an ultrasound (US) pressure wave, vibrate, the phase shift fluctuates, thereby causing fluctuation in speckle intensity. We use the laser speckle contrast analysis (LSCA) to reconstruct a map of the elastic property (Young's modulus) of soft tissue-mimicking phantom. The displacement of the scatters is inversely related to the Young's modulus of the medium. The elastic properties of soft biological tissues vary, many fold with malignancy. The experimental results show that laser speckle contrast (LSC) is very sensitive to the pathological changes in a soft tissue medium. The experiments are carried out on a phantom with two cylindrical inclusions of sizes 6 mm in diameter, separated by 8 mm between them. Three samples are made. One inclusion has Young's modulus E of 40 kPa. The second inclusion has either a Young's modulus E of 20 kPa, or scattering coefficient of mu'(s), = 3.00 mm(-1) or absorption coefficient of mu(a) = 0.03 mm(-1). The optical absorption (mu(a)), reduced scattering (mu'(s)) coefficient, and the Young's modulus of the background are mu(a) = 0.01 mm(-1), mu'(s) = 1.00 mm(-1) and 12kPa, respectively. The experiments are carried out on all three phantoms. On a phantom with two inclusions of Young's modulus of 20 and 40 kPa, the measured relative speckle image contrasts are 36.55% and 63.72%, respectively. Experiments are repeated on phantoms with inclusions of mu(a) = 0.03 mm-1, E = 40 kPa and mu'(s) = 3.00 mm(-1). The results show that it is possible to detect inclusions with contrasts in optical absorption, optical scattering, and Young's modulus. Studies of the variation of laser speckle contrast with ultrasound driving force for various values of mu(a), mu'(s), and Young's modulus of the tissue mimicking medium are also carried out. (C) 2011 American Institute of Physics. doi:10.1063/1.3592352]
Resumo:
Yttrium oxide (Y(2)O(3)) thin films were deposited by microwave electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapour deposition (MOCVD) process using indigenously developed metal organic precursors Yttrium 2,7,7-trimethyl-3,5-octanedionates, commonly known as Y(tod)(3) which were synthesized by an ultrasound method. A series of thin films were deposited by varying the oxygen flow rate from 1-9 sccm, keeping all other parameters constant. The deposited coatings were characterized by X-ray photoelectron spectroscopy, glancing angle X-ray diffraction and infrared spectroscopy. Thickness and roughness for the films were measured by stylus profilometry. Optical properties of the coatings were studied by the spectroscopic ellipsometry. Hardness and elastic modulus of the films were measured by nanoindentation technique. Being that microwave ECR CVD process is operating-pressure-sensitive, optimum oxygen activity is very essential for a fixed flow rate of precursor, in order to get a single phase cubic yttrium oxide in the films. To the best of our knowledge, this is the first effort that describes the use of Y(tod)(3) precursor for deposition of Y(2)O(3) films using plasma assisted CVD process.
Resumo:
Three groups of poly(mannitol citric dicarboxylate) [p(MCD)] copolyesters were synthesized by catalyst-free melt condensation of mannitol with acids. The resulting copolyesters were designated as poly(mannitol citric succinate) [p(MCSu)], poly(mannitol citric adipate) [p(MCA)], poly(mannitol citric sebacate) [p(MCS)]. The polymers were characterized by FTIR, (1)H NMR, and DSC analysis. The synthesized p(MCD) polymers exhibit glass transition temperatures ranging from 16.5 to 58.58 degrees C. The mechanical, degradation properties, and the drug-releasing characteristics of these polymers were investigated. It was observed that the mechanical properties of the p(MCD) polymers cover a wide range with Young's modulus of the polymer varying from 12.25 to 660 MPa. Hydrolytic degradation of all polymers was investigated by incubating polymer discs in PBS and the hydrolytic degradation of p(MCD) polymers followed the order, p(MCSu) > p(MCA) > p(MCS). This was attributed to the number of -CH(2)(units in the dicarboxylic monomers. The release of model drug compounds from the p(MCD) polymer discs was also studied. POLYM. ENG. SCI., 51:2035-2043, 2011. (C) 2011 Society of Plastics Engineers
Resumo:
The realistic estimation of the dynamic characteristics for a known set of loading conditions continues to be difficult despite many contributions in the past. The design of a machine foundation is generally made on the basis of limiting amplitude or resonant frequency. These parameters are in turn dependent on the dynamic characteristics of soil viz., the shear modulus/stiffness and damping. The work reported herein is an attempt to relate statistically the shear modulus of a soil to its resonant amplitude under a known set of static and dynamic loading conditions as well as wide ranging soil conditions. The two parameters have been statistically related with a good correlation coefficient and low standard error of estimate.
Resumo:
This paper deals with preparation of nanocomposites using modified nanoclay (organoclay) and polypropylene (PP), with, and without compatibilizer (m-TMI-g-PP) to study the effects of modified nanoclay and compatibilizer on viscoelastic properties. Nanocomposites were prepared in two steps; compounding of master batch of nanoclay, polypropylene and m-TMI-g-PP in a torque rheometer and blending of this master-batch with polypropylene in a twin-screw extruder in the specific proportions to yield 3-9% nanoclay by weight in the composite. Dynamic Mechanical Analysis (DMA) tests were carried out to investigate the viscoelastic behavior of virgin polypropylene and nanocomposites. The dynamic mechanical properties such as storage modulus (E'), loss modulus (E `') and damping coefficient (tand) of PP and nano-composites were investigated with and without compatibilizer in the temperature range of -40 degrees C to 140 degrees C at a step of 5 degrees C and frequency range of 5 Hz to 100 Hz at a step of 10 Hz. Storage modulus and loss modulus of the nano-composites was significantly higher than virgin polypropylene throughout the temperature range. Storage modulus of the composites increased continuously with increasing nano-content from 3% to 9%. Composites prepared with compatibilizer exhibited inferior storage modulus than the composites without compatibilizer. Surface morphology such as dispersion of nanoclay in the composites with and without compatibilizer was analyzed through Atomic Force Microscope (AFM) that explained the differences in viscoelastic behavior of composites. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Mechanical properties of ZnS nanowires and thin films are studied as a function of size and growth direction using all-atom molecular dynamics simulations. Using the stress-strain relationship we extract Young's moduli of nanowires and thin films at room temperature. Our results show that Young's modulus of 0001] nanowires has strong size dependence. On the other hand, 01 (1) over bar0] nanowires do not exhibit a strong size dependence of Young's modulus in the size range we have investigated. We provide a microscopic understanding of this behavior on the basis of bond stretching and contraction due to the rearrangement of atoms in the surface layers. The ultimate tensile strengths of the nanowires do not show much size dependence. To investigate the mechanical behavior of ZnS in two dimensions, we calculate Young's modulus of thin films under tensile strain along the 0001] direction. Young's modulus of thin films converges to the bulk value more rapidly than that of the 0001] nanowire.
Resumo:
The availability of a reliable bound on an integral involving the square of the modulus of a form factor on the unitarity cut allows one to constrain the form factor at points inside the analyticity domain and its shape parameters, and also to isolate domains on the real axis and in the complex energy plane where zeros are excluded. In this lecture note, we review the mathematical techniques of this formalism in its standard form, known as the method of unitarity bounds, and recent developments which allow us to include information on the phase and modulus along a part of the unitarity cut. We also provide a brief summary of some results that we have obtained in the recent past, which demonstrate the usefulness of the method for precision predictions on the form factors.
Resumo:
We have carried out synchrotron based high-pressure x-ray diffraction study of orthorhombic EuMnO3, GdMnO3, TbMnO3 and DyMnO3 up to 54.4, 41.6, 47.0 and 50.2 GPa, respectively. The diffraction peaks of all the four manganites shift monotonically to higher diffraction angles and the crystals retain the orthorhombic structure till the highest pressure. We have fitted the observed volume versus pressure data with the Birch-Murnaghan equation of state and determined the bulk modulus to be 185 +/- 6 GPa, 190 +/- 16 GPa, 188 +/- 9 GPa and 192 +/- 8 GPa for EuMnO3, GdMnO3, TbMnO3 and DyMnO3, respectively. The bulk modulus of EuMnO3 is comparable to other manganites, in contrast to theoretical predictions.
Resumo:
This paper reports optical and nanomechanical properties of predominantly a-axis oriented AlN thin films. These films were deposited by reactive DC magnetron sputtering technique at an optimal target to substrate distance of 180 mm. X-ray rocking curve (FWHM = 52 arcsec) studies confirmed the preferred orientation. Spectroscopic ellipsometry revealed a refractive index of 1.93 at a wavelength of 546 nm. The hardness and elastic modulus of these films were 17 and 190 GPa, respectively, which are much higher than those reported earlier can be useful for piezoelectric films in bulk acoustic wave resonators. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4772204]
Resumo:
Chromium nitride (CrN) thin films were deposited at room temperature on silicon and glass substrates using DC reactive magnetron sputtering in Ar + N-2 plasma. Structure and mechanical properties of these films were examined by using XRD, FESEM and nanoindentation techniques. XRD studies revealed that films are of mixed phase at lower nitrogen partial pressure (P-N2) and single phase at higher (P-N2). Microscopy results show that the films were composed of non-equiaxed columns with nanocrystallite morphology. The hardness and elastic modulus of the films increase with increasing nitrogen partial pressure (P-N2). A maximum hardness of similar to 29 GPa and elastic modulus of 341 GPa were obtained, which make these films useful for several potential applications. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In the present study, WC-12Co coatings were deposited by detonation-spraying technique using conventional and nanostructured WC-12Co feedstock at four different oxy/fuel ratios (OF ratio). The coatings exhibited the presence of phases like W2C and W due to the decarburization of the WC phase, and the proportions of these phases were higher in the nano WC-12Co coatings compared with conventional WC-12Co coatings. Coating hardness and fracture toughness were measured. The tribological performance of coatings was examined under dry sand rubber wheel abrasion wear, and solid particle erosion wear conditions. The mechanical and wear properties of coatings were influenced by degree of decarburization and more so in the case of nanostructured WC-Co coatings. The results indicate that the extent of decarburization has a substantial influence on the elastic modulus of the coating which in turn is related to the extent of intersplat cracking of the coating.
Resumo:
Recent data from high-statistics experiments that have measured the modulus of the pion electromagnetic form factor from threshold to relatively high energies are used as input in a suitable mathematical framework of analytic continuation to find stringent constraints on the shape parameters of the form factor at t = 0. The method uses also as input a precise description of the phase of the form factor in the elastic region based on Fermi-Watson theorem and the analysis of the pi pi scattering amplitude with dispersive Roy equations, and some information on the spacelike region coming from recent high precision experiments. Our analysis confirms the inconsistencies of several data on the modulus, especially from low energies, with analyticity and the input phase, noted in our earlier work. Using the data on the modulus from energies above 0.65 GeV, we obtain, with no specific parametrisation, the prediction < r(pi)(2)> is an element of (0.42, 0.44) fm(2) for the charge radius. The same formalism leads also to very narrow allowed ranges for the higher-order shape parameters at t = 0, with a strong correlation among them.
Resumo:
Bacterial infection remains an important risk factor after orthopedic surgery. The present paper reports the synthesis of hydroxyapatite-silver (HA-Ag) and carbon nanotube-silver (CNT-Ag) composites via spark plasma sintering (SPS) route. The retention of the initial phases after SPS was confirmed by phase analysis using X-ray diffraction and Raman spectroscopy. Energy dispersive spectrum analysis showed that Ag was distributed uniformly in the CNT/HA matrix. The breakage of CNTs into spheroid particles at higher temperatures (1700 degrees C) is attributed to the Rayleigh instability criterion. Mechanical properties (hardness and elastic modulus) of the samples were evaluated using nanoindentation testing. Ag reinforcement resulted in the enhancement of hardness (by similar to 15%) and elastic modulus (similar to 5%) of HA samples, whereas Ag reinforcement in CNT, Ag addition does not have much effect on hardness (0.3 GPa) and elastic modulus (5 GPa). The antibacterial tests performed using Escherichia coli and Staphylococcus epidermidis showed significant decrease (by similar to 65-86%) in the number of adhered bacteria in HA/CNT composites reinforced with 5% Ag nanoparticles. Thus, Ag-reinforced HA/CNT can serve as potential antibacterial biocomposites.
Resumo:
The present work deals with the prediction of stiffness of an Indian nanoclay-reinforced polypropylene composite (that can be termed as a nanocomposite) using a Monte Carlo finite element analysis (FEA) technique. Nanocomposite samples are at first prepared in the laboratory using a torque rheometer for achieving desirable dispersion of nanoclay during master batch preparation followed up with extrusion for the fabrication of tensile test dog-bone specimens. It has been observed through SEM (scanning electron microscopy) images of the prepared nanocomposite containing a given percentage (3–9% by weight) of the considered nanoclay that nanoclay platelets tend to remain in clusters. By ascertaining the average size of these nanoclay clusters from the images mentioned, a planar finite element model is created in which nanoclay groups and polymer matrix are modeled as separate entities assuming a given homogeneous distribution of the nanoclay clusters. Using a Monte Carlo simulation procedure, the distribution of nanoclay is varied randomly in an automated manner in a commercial FEA code, and virtual tensile tests are performed for computing the linear stiffness for each case. Values of computed stiffness modulus of highest frequency for nanocomposites with different nanoclay contents correspond well with the experimentally obtained measures of stiffness establishing the effectiveness of the present approach for further applications.