51 resultados para Lithosphere thickness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since it is difficult to find the analytical solution of the governing Poisson equation for double gate MOSFETs with the body doping term included, the majority of the compact models are developed for undoped-body devices for which the analytical solution is available. Proposed is a simple technique to included a body doping term in such surface potential based common double gate MOSFET models also by taking into account any differences between the gate oxide thickness. The proposed technique is validated against TCAD simulation and found to be accurate as long as the channel is fully depleted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bilayer thin films of Bi/As2S3 were prepared from Bi and As2S3 by thermal evaporation technique under high vacuum. We have prepared three bilayer films of 905nm, 910nm and 915nm thickness with with As2S3 as bottom layer (900nm) and Bi as top layer (5,10,15 nm). We have compared the optical changes due to the thickness variation of Bi layer on As2S3 film. The changes were characterized by FTIR and XPS techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present the effect of thickness variation of hole injection and hole blocking layers on the performance of fluorescent green organic light emitting diodes (OLEDs). A number of OLED devices have been fabricated with combinations of hole injecting and hole blocking layers of varying thicknesses. Even though hole blocking and hole injection layers have opposite functions, yet there is a particular combination of their thicknesses when they function in conjunction and luminous efficiency and power efficiency are maximized. The optimum thickness of CuPc (Copper(II) phthalocyanine) layer, used as hole injection layer and BCP (2,9 dimethyl-4,7-diphenyl-1,10-phenanthroline) used as hole blocking layer were found to be 18 nm and 10 nm respectively. It is with this delicate adjustment of thicknesses, charge balancing is achieved and luminous efficiency and power efficiency were optimized. The maximum luminous efficiency of 3.82 cd/A at a current density of 24.45 mA/cm(2) and maximum power efficiency of 2.61 lm/W at a current density of 5.3 mA/cm(2) were achieved. We obtained luminance of 5993 cd/m(2) when current density was 140 mA/cm(2). The EL spectra was obtained for the LEDs and found that it has a peaking at 524 nm of wavelength. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an extensive study on the structural, electrical and optical properties of InN thin films grown on c-Al2O3, GaN(130 nm)/Al2O3, GaN(200 nm)/Al2O3 and GaN(4 mu m)/Al2O3 by using plasma-assisted molecular beam epitaxy. The high resolution X-ray diffraction study reveals better crystalline quality for the film grown on GaN(4 mu m)/Al2O3 as compared to others. The electronic and optical properties seem to be greatly influenced by the structural quality of the films, as can be evidenced from Hall measurement and optical absorption spectroscopy. Kane's k.p model was used to describe the dependence of optical absorption edge of InN films on carrier concentration by considering the non-parabolic dispersion relation for carrier in the conduction band. Room temperature Raman spectra for the InN films grown on GaN show the signature of residual tensile stress in contrast to the compressive stress observed for the films grown directly on c-Al2O3. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The way in which basal tractions, associated with mantle convection, couples with the lithosphere is a fundamental problem in geodynamics. A successful lithosphere-mantle coupling model for the Earth will satisfy observations of plate motions, intraplate stresses, and the plate boundary zone deformation. We solve the depth integrated three-dimensional force balance equations in a global finite element model that takes into account effects of both topography and shallow lithosphere structure as well as tractions originating from deeper mantle convection. The contribution from topography and lithosphere structure is estimated by calculating gravitational potential energy differences. The basal tractions are derived from a fully dynamic flow model with both radial and lateral viscosity variations. We simultaneously fit stresses and plate motions in order to delineate a best-fit lithosphere-mantle coupling model. We use both the World Stress Map and the Global Strain Rate Model to constrain the models. We find that a strongly coupled model with a stiff lithosphere and 3-4 orders of lateral viscosity variations in the lithosphere are best able to match the observational constraints. Our predicted deviatoric stresses, which are dominated by contribution from mantle tractions, range between 20-70 MPa. The best-fitting coupled models predict strain rates that are consistent with observations. That is, the intraplate areas are nearly rigid whereas plate boundaries and some other continental deformation zones display high strain rates. Comparison of mantle tractions and surface velocities indicate that in most areas tractions are driving, although in a few regions, including western North America, tractions are resistive. Citation: Ghosh, A., W. E. Holt, and L. M. Wen (2013), Predicting the lithospheric stress field and plate motions by joint modeling of lithosphere and mantle dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the unique quasi-linear relationship between the surface potentials along the channel, recently we have proposed a quasi-static terminal charge model for common double-gate MOSFETs, which might have asymmetric gate oxide thickness. In this brief, we extend this concept to develop the nonquasi-static (NQS) charge model for the same by solving the governing continuity equations. The proposed NQS model shows good agreement against TCAD simulations and appears to be useful for efficient circuit simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We estimate the distribution of ice thickness for a Himalayan glacier using surface velocities, slope and the ice flow law. Surface velocities over Gangotri Glacier were estimated using sub-pixel correlation of Landsat TM and ETM+ imagery. Velocities range from similar to 14-85 m a(-1) in the accumulation region to similar to 20-30 ma(-1) near the snout. Depth profiles were calculated using the equation of laminar flow. Thickness varies from similar to 540 m in the upper reaches to similar to 50-60 m near the snout. The volume of the glacier is estimated to be 23.2 +/- 4.2 km(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Application of high electric-field between two points in a thin metallic film results in liquefaction and subsequent flow of the liquid-film from one electrode to another in a radially symmetric fashion. Here, we report the transition of the flow kinetics driven by the liquid film thickness varying from 3 to 100 nm. The mechanism of the flow behavior is observed to be independent of the film thickness; however, the kinetics of the flow depends on the film thickness and the applied voltage. An analytical model, incorporating viscosity and varying electrical resistivity with film thickness, is developed to explain the experimental observations. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent conducting ZnO films were prepared at substrate temperature 400 degrees C with different film thicknesses by nebulizer spray pyrolysis method on glass substrates. XRD studies reveal that the films are polycrystalline in nature having hexagonal crystal structure with preferred grain orientations along (0 0 2) and (1 0 1) directions. The crystallite size increases along (0 0 2) plane with the thickness increase and attains a maximum 109 nm for 913 nm film thickness. Analysis of structural parameters indicates that the films having thickness 913 nm are found to have minimum dislocation density and strain values. The HRSEM measurements show that the surface morphology of the films also changes with film thickness. EDAX estimates the average atomic percentage ratio of Zn and O in the ZnO films. Optical studies reveal the band gap energy decrease from 3.27 to 3.14 eV with increase of film thickness. Room temperature PL spectra show the near-band-edge emission and deep-level emission due to the presence of defects in the ZnO thin films. Impedance spectroscopy analysis indicates that grain boundary resistance decreases with the increasing ammonia concentration up to 500 ppm and the maximum sensitivity is found to be 1.7 for 500 ppm of ammonia. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films were deposited on glass and silicon (100) substrates by the sol-gel method. The influence of film thickness and annealing temperature on optical transmittance/reflectance of TiO2 films was studied. TiO2 films were used to fabricate metal-oxide-semiconductor capacitors. The capacitance-voltage (C-V), dissipation-voltage (D-V) and current-voltage (I-V) characteristics were studied at different annealing temperatures and the dielectric constant, current density and resistivity were estimated. The loss tangent (dissipation) increased with increase of annealing temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulations of bilayers in a surfactant/co-surfactant/water system with explicit solvent molecules show formation of topologically distinct gel phases depending upon the bilayer composition. At low temperatures, the bilayers transform from the tilted gel phase, L beta', to the one dimensional (1D) rippled, P beta' phase as the surfactant concentration is increased. More interestingly, we observe a two dimensional (2D) square phase at higher surfactant concentration which, upon heating, transforms to the gel L beta' phase. The thickness modulations in the 1D rippled and square phases are asymmetric in two surfactant leaflets and the bilayer thickness varies by a factor of similar to 2 between maximum and minimum. The 1D ripple consists of a thinner interdigitated region of smaller extent alternating with a thicker non-interdigitated region. The 2D ripple phase is made up of two superimposed square lattices of maximum and minimum thicknesses with molecules of high tilt forming a square lattice translated from the lattice formed with the thickness minima. Using Voronoi diagrams we analyze the intricate interplay between the area-per-head-group, height modulations and chain tilt for the different ripple symmetries. Our simulations indicate that composition plays an important role in controlling the formation of low temperature gel phase symmetries and rippling accommodates the increased area-per-head-group of the surfactant molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on the electrical switching, structural, optical and photoacoustic analysis have been undertaken on chalcogenide GeSe1.5S0.5 thin films of various thicknesses prepared by vacuum evaporation technique. The decrease of band gap energy with increase in film thickness has been explained using the `density of states model'. The structural units of the films are characterized using Raman spectroscopy and the deconvoluted Raman peaks obtained from Gaussian fit around 188 cm(-1), 204 cm(-1) and 214 cm(-1) favors Ge-chalcogen tetrahedral units forming corner and edge sharing tetrahedra. All the thin films samples have been exhibited memory-type electrical switching behavior. An enhancement in the threshold voltages of GeSe1.5S0.5 thin films have been observed with increase in film thickness. The thickness dependence of switching voltages provide an insight into the switching mechanism and it is explained by the Joule heating effect. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existing compact models for common double-gate (CDG) MOSFETs are based on the fundamental assumption of having symmetric gate oxide thickness. In this paper, we demonstrate that using the unique quasi-linear relationship between the surface potentials, it is possible to develop compact model for CDG-MOSFETs without such approximation while preserving the mathematical complexity at the same level of the existing models. In the proposed model, the surface potential relationship is used to include the drain-induced barrier lowering, channel length modulation, velocity saturation, and quantum mechanical effect in the long-channel model and good agreement is observed with the technology computer aided design simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systematic experiments have been carried out by monitoring the in-situ pressure and thickness profiles for three different configurations, viz., flat plate, flat plate with a central circular hole, and an L-section using vacuum assisted resin transfer molding (VARTM) process. The effect of anisotropy on resin flow has been quantified by considering uni-directional carbon fiber preforms with 0 degrees and 90 degrees orientation to the flow direction for each configuration. A quasi-isotropic 45 degrees/0 degrees/-45 degrees/90 degrees](S) layup has also been included for flat plate case. Additionally, the study has been extended to understand the effect of using high permeability medium for each configuration. Fluid pressure profiles and thickness variation profiles have been obtained using an array of pressure sensors and linear variable differential transformers for each configuration. Experimental data reveal that anisotropy (due to changing fiber orientations), configuration, and gravity significantly change fluid pressure and displacement fields obtained during VARTM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, Li2-x MnO3-y (LMO) thin films have been deposited by radio frequency (RF) reactive magnetron sputtering using acid-treated Li2MnO3 powder target. Systematic investigations have been carried out to study the effect of RF power on the physicochemical properties of LMO thin films deposited on platinized silicon substrates. X-ray diffraction, electron microscopy, surface chemical analysis and electrochemical studies were carried out for the LMO films after post deposition annealing treatment at 500 A degrees C for 1 h in air ambience. Galvanostatic charge discharge studies carried out using the LMO thin film electrodes, delivered a highest discharge capacity of 139 mu Ah mu m(-1) cm(-2) in the potential window 2.0-3.5 V vs. Li/Li+ at 100 W RF power and lowest discharge capacity of 80 mu Ah mu m(-1) cm(-2) at 75 W RF power. Thereafter, the physicochemical properties of LMO films deposited using optimized RF power 100 W on stainless steel substrates has been studied in the thickness range of 70 to 300 nm as a case study. From the galvanostatic charge discharge experiments, a stable discharge capacity of 68 mu Ah mu m(-1) cm(-2) was achieved in the potential window 2.0-4.2 V vs. Li/Li+ tested up to 30 cycles. As the thickness increased, the specific discharge capacity started reducing with higher magnitude of capacity fading.