308 resultados para Leaf structure
Resumo:
[NiL2(NCS)2] (1) [L = 2-(aminomethyl)pyridine], [NiL02(NCS)2] (2) [(L0) = 2-(2-aminoethyl)pyridine and [NiL00 2(NCS)2] (3) [L00 = 2-(2-methylaminoethyl)pyridine] have been synthesized from solution. All the complexes possess trans geometry as is evident from solid state UV–Vis spectral study and X-ray single crystal structure analysis of complex 2 unambiguously proves trans geometry of the species.
Resumo:
Sr2FeMoO6 oxides exhibit a half-metallic ferromagnetic (HM-FM) ground state and peculiar magnetic and magnetotransport properties, which are interesting for applications in the emerging field of spintronics and attractive for fundamental research in the field of heavily correlated electron systems. Sr2FeWO6 is an insulator with an antiferromagnetic (I-AFM) ground state. The solid solutions Sr2FeMoxW1-xO6 also have peculiar properties-W doping enhances chemical order which allows stabilization of the HM-FM state; as the W content exceeds a certain value a metal to insulator transition (MIT) occurs. The role of W in determining the physical properties of Sr2FeMoxW1-xO6 systems has been a matter of intense investigation. This work deals with the problem of the structural and electronic changes related to the MIT from a local perspective by means of x-ray absorption spectroscopy (XAS). This technique allows one to probe in detail the local structure and electronic modifications around selected absorber ions (W, Mo, Fe and Sr in our case). The results of XAS analysis in the whole composition range (0 <= x <= 1), in the near edge (XANES) and extended (EXAFS) regions, demonstrate an abrupt change of the local structure around the Fe and Mo sites at the critical composition, x(c). This change represents the microstructural counterpart associated with the MIT. Conversely, the local structure and electronic configuration of W ions remain unaltered in the whole composition range, suggesting indirect participation of W in the MIT.
Resumo:
The genomic sequences of several RNA plant viruses including cucumber mosaic virus, brome mosaic virus, alfalfa mosaic virus and tobacco mosaic virus have become available recently. The former two viruses are icosahedral while the latter two are bullet and rod shaped, respectively in particle morphology. The non-structural 3a proteins of cucumber mosaic virus and brome mosaic virus have an amino acid sequence homology of 35% and hence are evolutionarily related. In contrast, the coat proteins exhibit little homology, although the circular dichroism spectrum of these viruses are similar. The non-coding regions of the genome also exhibit variable but extensive homology. Comparison of the brome mosaic virus and alfalfa mosaic virus sequences reveals that they are probably related although with a much larger evolutionary distance. The polypeptide folds of the coat protein of three biologically distinct isometric plant viruses, tomato bushy stunt virus, southern bean mosaic virus and satellite tobacco necrosis virus have been shown to display a striking resemblance. All of them consist of a topologically similar 8-standard β-barrel. The implications of these studies to the understanding of the evolution of plant viruses will be discussed.
Resumo:
M r= 975.9, orthorhombic, Pnna, a = 20.262 (3), b= 15.717 (2), c= 15.038 (1)A, V= 4788.97 A 3, z = 4, D x = 1.35 Mg m -3, Cu Kct radiation, 2 = 1.5418 A, /t = 2.79 mm -1, F(000) -= 2072, T = 293 K, R = 0.08, 3335 observed reflections. The molecular structure and the crystal packing are similar to those observed in the nonactin complexes of sodium thiocyanate and potassium thiocyanate. The eight metal-O distances are nearly the same in the potassium complex whereas the four distances involving carbonyl O atoms are shorter than the remaining four involving the tetrahydrofuran-ring O atoms in the Na and the Ca complexes. This observation can be explained in terms of the small ionic radii of Na + and Ca 2+, and leads to a plausible structural rationale for the stronger affinity of nonactin for K + than for the other two metal ions.
Resumo:
Na+.C6HI209 P-, Mr=282.1, monoclinic, e2~, a=5-762(1), b=7.163(2), c=12.313(1)A, fl= 99.97 (1) °, U= 500.5 A 3, Z= 2, D m = 1.86, D x = 1.87 Mg m -s, Cu Ka, 2 = 1.5418 A, /a = 3-3 mm -1, F(000) = 292, T= 300 K, final R for 922 observed reflections is 0-042. The phosphate ester bond, P-O(6), is 1.575 (5)A, slightly shorter than the P~O bond in monopotassium phosphoenolpyruvate [1.612 (6) A] [Hosur & Viswamitra (1981). Acta Cryst. B37, 839-843]. The pyranose sugar ring takes a 4C 1 chair conformation. The conformation about the exocyclic C(5)-C(6) bond is gauche-trans. The endocyclic C-O bonds in the glucose ring are nearly equal with C(5)-O(5) = 1.435 (8) and C(1)-O(5) = 1.436 (9) A. The sodium ion has seven near neighbours within a distance of 2.9 A. The crystal structure is stabilized by hydrogen bonds between the O atoms of symmetryrelated molecules.
Resumo:
The structure and conformation of a second crystalline modification of 19-nortestosterone has been determined by X-ray methods. M r = 274, monoclinic P2 l, a=9.755(2), b= 11.467(3), c= 14.196(3)/L fl=101.07(2) ° , V=1558.4 (8) A 3, Z=4, Ox= I. 168 g cm -3, Mo Ka, 2 = 0.7107 ,/k, ~ = 0.80 cm -l, F(000) = 600, T= 300 K. R = 0.060 for 2158 observed reflections. The two molecules in the asymmetric unit show significant differences in the A-ring conformation from that of the previously reported form of the title compound [Precigoux, Busetta, Courseille & Hospital (1975). Acta Cryst. B31, 1527-1532]. The l a,2fl-half-chair conformation of the A ring increases its conformational freedom compared with testosterone.
Resumo:
M r= 470.46, rhombohedral, R3, a =8.710(4)A, a=91.10(3) o, V= 660.4 (9) A 3, Z= 1,D m= 1.170 (flotation in KI solution), D x=1.183 Mg m -a, Mo Kct, 2 = 0.7107/~,, /t =0.033 mm -1, F(000) - 248.0, T= 293 K, R -- 4.6%(481 unique reflections). The molecule has C a symmetry and is propeller shaped, the angle of twist about the B-C bond being 41.5 (7) °. The space group being chiral, this is yet another example of spontaneous resolution. The results of a thermal-motion analysis are discussed.
Resumo:
The use of two liquid crystals as solvents in the determination of molecular structure has been demonstrated for systems which do not provide structural information from studies in a single solvent owing to the fact that the spectra are deceptively simple, with the result that all the spectral parameters cannot be derived with reasonable precision. The specific system studied was 2-(p-bromophenyl)-4,6-dichloropyrimidine, for which relative inter-proton discances have been determined from the proton NMR spectra in two nematic solvents.
Resumo:
M r = 326.3, monoclinic, P21, a --= 6.510 (2), b=8.432 (2), c= 15.114 (2),a, /~= 101.42 (3) ° , Z = 2, V= 813.15 A 3, D x = 1-33 Mg m -3, F(000) = 172, 2(Cu Ka) = 1.5418/~,, g(Cu Ka) = 0.906 mm -~, final R = 6.4% for 1924 observed counter reflections. The conformation about the glycosidic bond is syn [torsion angle C(6)-N(1)-C(1')-O(4')=-103.9(3)°]. The sugar pucker is C(2')-exo,C(3')-endo (3Tz). The conformation about the C(4')-C(5') bond is gauche-trans. An uncommon intermolecular hydrogen bond involving the ribose-ring oxygen O(1') and the base-nitrogen N(3) stabilizes the crystal structure.
Resumo:
Near threshold fatigue crack growth behavior of a high strength steel under different temper levels was investigated. It is found that the observed variations in ΔKth could predominantly be attributed to roughness induced crack closure. The closure-free component of the threshold stress intensity range, ΔKeff,th showed a systematic variation with monotonic yield strength.
Resumo:
C13H14N2OS, M r = 246, is monoclinic, P21/c, with a = 7.214(1), b = 8.935(5), c = 20.243 (6) A, fl =99.42 (2) °, V = 1304.83 ,~3, Z = 4, D m = 1.23, D x =1.25 Mg m -3, p(Mo Ka, 2 = 0.7107 A) = 0.232 mm -~,F(000) = 520. The structure was solved by direct methods and refined to an R value of 0.042 using 1127 intensity measurements. The C=C and C-N bond distances differ considerably from their normal values. An appreciable rotation [38.3(4) °] about the C=C bond is observed, the bond length being 1.414(5)A.This is due to the combination of push-pull and steric effects.
Resumo:
A pre-requisite for the elucidation of the mechanism of action of aspirin-like drugs, which are believed to exert their pharmacological effects through the inhibition of prostaglandin biosynthesis, is an understanding of their molecular geometry, the non-covalent interactions they are likely to be involved in, and the geometrical and the electronic consequences of such interactions. This has been sought to be achieved through the x-ray analysis of these drug molecules and their crystalline complexes with other suitable molecules. The results obtained from such studies have been discussed in terms of specific typical examples. For instance, antipyrine can form metal and hydrogen-bonded complexes; phenylbutazone can form ionic complexes with basic molecules. Complex formation is accompanied by characteristic changes in the molecular geometry and the electronic structure in both the cases. The results obtained so far appear to indicate that the important common invariant structural features of the fenamates, deduced from crystal structures, are retained even when complexation takes place.
Resumo:
From the proton NMR spectra of Nfl-dimethyluracil oriented in two different nematic solvents, the internal rotation of the methyl groups about the N-C bonds is studied. It has been observed that the preferred conformation of the methyl group having one carbonyl in the vicinity is the one where a C-H bond is in the ring plane pointing toward the carbonyl group. The results are not sensitive to the mode of rotation of the other methyl group. These data are interpreted in terms of the bond polarizations.
Resumo:
l-Lysine acetate crystallises in the monoclinic space group P21 with a = 5.411 (1), b = 7.562(1), c= l2.635(2) Å and β = 91.7(1). The crystal structure was solved by direct methods and refined to an R value of 0.049 using the full matrix least squares method. The conformation and the aggregation of lysine molecules in the structure are similar to those found in the crystal structure of l-lysine l-aspartate. A conspicuous similarity between the crystal structures of l-arginine acetate and l-lysine acetate is that in both cases the strongly basic side chain, although having the largest pK value, interacts with the weakly acidic acetate group leaving the α-amino and the α-carboxylate groups to take part in head-to-tail sequences. These structures thus indicate that electrostatic effects are strongly modulated by other factors so as to give rise to head-to-tail sequences which have earlier been shown to be an almost universal feature of amino acid aggregation in the solid state.
Resumo:
The paper presents for the first time a fully computerized method for structural synthesis of geared kinematic chains which can be used to derive epicyclic gear drives. The method has been formulated on the basis of representing these chains by their graphs, the graphs being in turn represented algebraically by their vertex-vertex incidence matrices. It has thus been possible to make advantageous use of concepts and results from graph theory to develop a method amenable for implementation on a digital computer. The computerized method has been applied to the structural synthesis of single-freedom geared kinematic chains with up to four gear pairs, and the results obtained thereform are presented and discussed.