165 resultados para Ion beam analysis
Resumo:
Stress induced by Focused Ion Beam (FIB) milling of cantilevers fabricated on silicon-on-insulator (SOI) wafer has been studied. Milling induces stress gradients ranging from -10MPa/μm to -120MPa/μm, depending on the location of cantilevers from the point of milling. Simulations were done to estimate the stress in the milled cantilevers.
Resumo:
Thin films of nanocrystalline MgO were deposited on glass/Si substrates by rf/dc sputtering from metallic Mg, and ceramic MgO targets. The purpose of this study is to identify the differences in the properties, magnetic in particular, of MgO films obtained on sputter deposition from 99.99% pure metallic Mg target in a controlled Nitrogen + Oxygen partial pressure (O(2)pp)] atmosphere as against those deposited using an equally pure ceramic MgO target in argon + identical oxygen ambience conditions while maintaining the same total pressure in the chamber in both cases. Characterization of the films was carried out by X-ray diffraction, focussed ion beam cross sectioning, atomic force microscopy and SQUID-magnetometry. The `as-obtained' films from pure Mg target are found to be predominantly X-ray amorphous, while the ceramic MgO target gives crystalline films, (002) oriented with respect to the film plane. The films consisted of nano-crystalline grains of size in the range of about 0.4 to 4.15 nm with the films from metallic target being more homogeneous and consisting of mostly subnanometer grains. Both the types of films are found to be ferromagnetic to much above room temperature. We observe unusually high maximum saturation magnetization (MS) values of 13.75 emu/g and similar to 4.2 emu/g, respectively for the MgO films prepared from Mg, and MgO targets. The origin of magnetism in MgO films is attributed to Mg vacancy (V-Mg), and 2p holes localized on oxygen sites. The role of nitrogen in enhancing the magnetic moments is also discussed.
Resumo:
The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (similar to 1.5 x 10(-6) mm(3)/Nm) and a modest COF (similar to 0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (similar to 2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu. (C) The Minerals, Metals & Materials Society and ASM International 2013
Resumo:
The retention of the desired combination of mechanical/tribological properties in ultrafine grained materials presents important challenges in the field of bulk metallic composites. In order to address this aspect, the present work demonstrates how one can achieve a good combination of hardness and wear resistance in Cu-Pb-TiB2 composites, consolidated by spark plasma sintering at low temperatures ( < 500 degrees C). Transmission electron microscope (TEM) studies reveal ultrafine grains of Cu (100-400 nm) with coarser TiB2 particles (1-2 mu m) along with fine scale Pb dispersoid at triple junctions or at the grain boundaries of Cu. Importantly, a high hardness of around 2.2 GPa and relative density of close to 90% relative density (rho(theo)) have been achieved for Cu-15 wt% TiB2-10 wt% Pb composite. Such property theo, combination has never been reported for any Cu-based nanocomposite, by conventional processing route. In reference to the tribological performance, fretting wear tests were conducted on the sintered nanocomposites and a good combination of steady state COF (0.6-0.7) and wear rate (10-4 mm(3)/N m) were measured. An inverse relationship between wear rate and hardness was recorded and this commensurates well with Archard's relationship of abrasive wear. The formation of a wear-resistant delaminated tribolayer consisting of TiB2 particles and ultrafine oxide debris, (Cu, Fe, Ti)(x)O-y as confirmed from subsurface imaging using focused ion beam microscopy has been identified as the key factors for the low wear rate of these composites. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic
Resumo:
Nickel selenide (NiSe) nanostructures possessing different morphologies of wires, spheres and hexagons are synthesized by varying the selenium precursors, selenourea, selenium dioxide (SeO2) and potassium selenocyanate (KSeCN), respectively, and are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and scanning electron microscopy techniques. Electrical measurements of a single nanowire and a hexagon carried out on devices fabricated by the focused ion beam (FIB) technique depict the semiconducting nature of NiSe and its ability to act as a visible light photodetector. The three different morphologies are used as catalysts for hydrogen evolution (HER), oxygen reduction (ORR) and glucose oxidation reactions. The wire morphology is found to be better than that of spheres and hexagons for all the reactions. Among the reactions studied, NiSe is found to be good for HER and glucose oxidation while ORR seems to terminate at the peroxide stage.
Resumo:
We report on the fabrication of microfluidc-nanofluidic channels on Si incorporated with embedded metallic interconnects. The device aids the study of motion of dispersed particles relative to the fluid under the influence of spatially uniform electric field. Optical lithography in combination with focused ion beam technique was used to fabricate the microfluidic-nanofluidic channels, respectively. Focused ion beam technique was also used for embedding the electrodes in the nanochannel. Gold contact pads were deposited using sputtering. The substrate was finally anodically bonded to a glass substrate.
Resumo:
Theoretical and experimental investigations on the near field and radiation characteristics show a fairly good agreement which justifies the TE(11)(x) mode of excitation. Eight polyrod antennas of different configurations were built and tested as functions of taper angles, straight and curved axial lengths, and frequency of excitation. It is found that the radiation patterns. cross-polarization level, beamwidth and gain could be controlled not only by the axial length and taper angles but also by shaping the axis of the polyrods in order to realize an optimum design
Resumo:
Using asymptotics, the coupled wavenumbers in an infinite fluid-filled flexible cylindrical shell vibrating in the beam mode (viz. circumferential wave order n = 1) are studied. Initially, the uncoupled wavenumbers of the acoustic fluid and the cylindrical shell structure are discussed. Simple closed form expressions for the structural wavenumbers (longitudinal, torsional and bending) are derived using asymptotic methods for low- and high-frequencies. It is found that at low frequencies the cylinder in the beam mode behaves like a Timoshenko beam. Next, the coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation of the structure and the acoustic fluid, with an added fluid-loading term involving a parameter mu due to the coupling. An asymptotic expansion involving mu is substituted in this equation. Analytical expressions are derived for the coupled wavenumbers (as modifications to the uncoupled wavenumbers) separately for low- and high-frequency ranges and further, within each frequency range, for large and small values of mu. Only the flexural wavenumber, the first rigid duct acoustic cut-on wavenumber and the first pressure-release acoustic cut-on wavenumber are considered. The general trend found is that for small mu, the coupled wavenumbers are close to the in vacuo structural wavenumber and the wavenumbers of the rigid-acoustic duct. With increasing mu, the perturbations increase, until the coupled wavenumbers are better identified as perturbations to the pressure-release wavenumbers. The systematic derivation for the separate cases of small and large mu gives more insight into the physics and helps to continuously track the wavenumber solutions as the fluid-loading parameter is varied from small to large values. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an intersection in the coupled case, but a gap is created at that frequency. This method of asymptotics is simple to implement using a symbolic computation package (like Maple). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The lead based ferroelectric PbZr0.53Ti0.47O3 (PZT), (Pb0.90La0.10)TiO3 (PLT10) and (Pb0.80La0.20)TiO3 (PLT20) thin films, prepared by pulsed laser ablation technique, were studied for their response to the 70 MeV oxygen ion irradiation. The dielectric analysis, capacitance-voltage (C- V) and DC leakage current measurements were performed before and after the irradiation to high-energy oxygen ions. The irradiation produced considerable changes in the dielectric, C-V, leakage characteristics and induced some amount of amorphization. The PZT films showed partial recrystallization after a thermal annealing at 400 degrees C for 10 min. The phase transition temperature [T-c] of PLT20 increased from 115 degrees C to 120 degrees C. The DC conductivity measurements showed a shift in the onset of non-linear conduction region. The current density decreased by two orders of magnitude after irradiation. After annealing the irradiated films at a temperature of 400 degrees C for 10 min, the films partially regained the dielectric and electrical properties. The results are discussed in terms of the irradiation-induced amorphization, the pinning of the ferroelectric domains by trapped charges and the thermal annealing of the defects generated during the irradiation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Bacillus subtilis BacB is an oxidase that is involved in the production of the antibiotic bacilysin. This protein contains two double-stranded beta-helix (cupin) domains fused in a compact arrangement. BacB crystallizes in three crystal forms under similar crystallization conditions. An interesting observation was that a slight perturbation of the crystallization droplet resulted in the nucleation of a different crystal form. An X-ray absorption scan of BacB suggested the presence of cobalt and iron in the crystal. Here, a comparative analysis of the different crystal forms of BacB is presented in an effort to identify the basis for the different lattices. It is noted that metal ions mediating interactions across the asymmetric unit dominate the different packing arrangements. Furthermore, a normalized B-factor analysis of all the crystal structures suggests that the solvent-exposed metal ions decrease the flexibility of a loop segment, perhaps influencing the choice of crystal form. The residues coordinating the surface metal ion are similar in the triclinic and monoclinic crystal forms. The coordinating ligands for the corresponding metal ion in the tetragonal crystal form are different, leading to a tighter packing arrangement. Although BacB is a monomer in solution, a dimer of BacB serves as a template on which higher order symmetrical arrangements are formed. The different crystal forms of BacB thus provide experimental evidence for metal-ion-mediated lattice formation and crystal packing.
Resumo:
Ion implantation systems, used for producing high-current ion beams, employ wide-beam ion sources which are rotated through 90 degrees . These sources need mass analyser optics which are different from the conventional design. The authors present results of calculation of the image distance as a function of entrance and exit angles of a sector magnet mass analyser having such a source. These computations have been performed for the magnetic deflection angles 45 degrees , 60 degrees and 90 degrees . The details of the computations carried out using the computer program MODBEAM, developed for this purpose, are also discussed.
Resumo:
The paper analyses electromagnetic wave propagation through nonlinear photonic crystal beam-splitters. Different lattice configurations of Y-junction beam-splitters are simulated and propagation properties are investigated with introducing nonlinearity with varying the rod size in crystal lattice. It is seen that nonlinear photonic crystal shows a considerable band-gap even at low refractive contrast. The division of power in both arms of beam-splitters can be controlled by varying the nonlinearity.
Resumo:
We utilize top polarization in the process e(+)e(-) -> t (t) over bar at the International Linear Collider ( ILC) with transverse beam polarization to probe interactions of the scalar and tensor type beyond the standard model and to disentangle their individual contributions. Ninety percent confidence level limits on the interactions with realistic integrated luminosity are presented and are found to improve by an order of magnitude compared to the case when the spin of the top quark is not measured. Sensitivities of the order of a few times 10(-3) TeV-2 for real and imaginary parts of both scalar and tensor couplings at root s = 500 and 800 GeV with an integrated luminosity of 500 fb(-1) and completely polarized beams are shown to be possible. A powerful model-independent framework for inclusive measurements is employed to describe the spin-momentum correlations, and their C, P, and T properties are presented in a technical appendix.
Resumo:
The domain of dynamic recrystallization (DRX) in as-cast 304 stainless steel material occurs at higher temperatures (1250 degrees C) and lower strain rates (0.001 s(-1)) than in wrought 304 stainless steel (1100 degrees C and 0.01 s(-1)). The above result has been explained earlier on the basis of a simple theoretical DRX model involving the rate of nucleation versus rate of grain boundary migration. The present investigation is aimed at examining experimentally the influence of carbide particles on the DRX of ascast 304 using secondary ion mass spectrometric (SIMS) analysis. Isothermal compression tests at a constant true strain rate have been performed on wrought 304 and as-cast 304 materials in the temperature and strain rate ranges of 1000 to 1250 degrees C and 0.001 to 1 s(-1) respectively. The SIMS analysis carried out on the deformed samples revealed that the large carbides present in the as-cast 304 material strongly influence the DRX process. In as-cast 304 material, the presence of large carbide particles in the microstructure shifts the DRX domain to higher temperature and lower strain rate in comparison with wrought 304 material.