166 resultados para ION CHEMISTRY
Resumo:
The objective of the present study is to develop the reaction mechanism and kinetics of photoreduction of NO by CO. For this purpose, the reactions were conducted in the presence of Pd-ion-substituted nano-TiO2, Ti1-xPdxO2-delta, which was synthesized via a solution combustion method. The photocatalytic activity was investigated with unsubstituted TiO2, 1% Pd/TiO2(imp), and Ti1-xPdxO2-delta (where x = 0.05-0.3). No appreciable NO conversion was observed over unsubstituted TiO2, although, despite competitive adsorption of NO and CO on the Pd2+ sites, there was a significant reduction of NO over Ti1-xPdxO2-delta. The kinetic model showed that the enhanced catalytic activity is due to the NO photodissociation at the oxide-ion vacancy.
Resumo:
The Maitra group has explored a variety of chemistry with bile acids during the past 15 years and these experiments have covered a wide variety of chemistry - asymmetric synthesis, molecular recognition, ion receptors/sensors, dendrimers, low molecular mass organo and hydrogelators, gel-nanoparticle composites, etc. Some of what excites us in this field is highlighted in this perspective article.
Resumo:
Studies of double-stranded-DNA binding have been performed with three isomeric bis)2-(n-pyridyl)-1H-benzimidazole)s (n = 2, 3, 4). Like the well-known Hoechst 33258, which is a bisbenzimidazole compound, these three isomers bind to the minor groove of duplex DNA. DNA binding by the three isomers was investigated in the presence of the divalent metal ions Mg2+, Co2+, Ni2+, Cu2+, and Zn2+. Ligand-DNA interactions were probed with fluorscence and circular dichroism spectroscopy. These studies revealed that the binding of the 2-pyridyl derivative to DNA is dramatically reduced in the presence of Co2+, Ni2+, and Cu2+ ions and is abolished completely at a ligand/metal-cation ratio of 1:1. Control experiments done with the isomeric 3- and 4-pyridyl derivatives showed that their binding to DNA is unaffected by the aforementioned transition-metal ions. The ability of 2-(2-pyridyl)benzimidazole changes of the ligand associated with ion chelation probably ledto such unusual binding results for the ortho isomer. The addition of ethylenediaminetetraacetic acid (EDTA) reversed the effects completely.
Resumo:
A chenodeoxycholic acid based K+ ion sensor has been designed using a modular approach in which a fluorophore and a cation receptor are attached to the bile acid backbone. In the absence of K+ the fluorescence of the molecule is quenched because of through-space, photo-induced electron-transfer from the aza-crown unit. Fluorescence enhancement was observed upon titration with K+ (and other alkali metal ions too). In methanol, good selectivity towards the sensing of K+ has been observed.
Resumo:
Elastic properties of Li2O-PbO-B2O3 glasses have been investigated using sound velocity measurements at 10 MHz. Four series of glasses have been investigated with different concentrations of Li2O, PbO and B2O3. The variations of molar volume have been examined for the influences of Li2O and PbO. The elastic moduli reveal trends in their compositional dependence. The bulk and shear modulus increases monotonically with increase in the concentration of tetrahedral boron which increases network dimensionality. The variation of bulk moduli has also been correlated to the variation in energy densities. The Poisson's ratio found to be insensitive to the concentration of tetrahedral boron in the structure. The experimental Debye temperatures are in good agreement with the expected theoretical values. Experimental observations have been examined in view, the presence of borate network and the possibility of non-negligible participation of lead in network formation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Room temperature, magnesium ion-conducting molten electrolytes are prepared using a combination of acetamide, urea and magnesium triflate or magnesium perchlorate. The molten liquids show high ionic conductivity, of the order of mS cm(-1) at 298 K. Vibrational spectroscopic studies based on triflate/perchlorate bands reveal that the free ion concentration is higher than that of ion-pairs and aggregates in the melt. Electrochemical reversibility of magnesium deposition and dissolution is demonstrated using cyclic voltammetry and impedance studies. The transport number of Mg2+ ion determined by means of a combination of d.c. and ac. techniques is similar to 0.40. Preliminary studies on the battery characteristics reveal good capacity for the magnesium rechargeable cell and open up the possibility of using this unique class of acetamide-based room temperature molten electrolytes in secondary magnesium batteries. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ion transport in a recently demonstrated promising soft matter solid plastic-polymer electrolyte is discussed here in the context of solvent dynamics and ion association. The plastic-polymer composite electrolytes display liquid-like ionic conductivity in the solid state,compliable mechanical strength (similar to 1 MPa), and wide electrochemical voltage stability (>= 5 V). Polyacrylonitrile (PAN) dispersed in lithium perchlorate (LiClO4)-succinonitrile (SN) was chosen as the model system for the study (abbreviated LiClO4-SN:PAN). Systematic observation of various mid-infrared isomer and ion association bands as a function of temperature and polyme concentration shows an effective increase in trans conformer concentration along with free Li+ ion concentration. This strongly supports the view that enhancement in LiClO4-SN:PAN ionic conductivity over the neat plastic electrolyte (LiClO4-SN) is due to both increase in charge mobility and concentration. The ionic conductivity and infrared spectroscopy studies are supported by Brillouin light scattering. For the LiClO4-SN:PAN composites, a peak at 17 GHz was observed in addition to the normal trans-gauche isomerism (as in neat SN) at 12 GHz. The fast process is attributed to increased dynamics of those SN molecules whose energy barrier of transition from gauche to trans has reduced under influences induced by the changes in temperature and polymer concentration. The observations from ionic conductivity, spectroscopy, and light scattering studies were further supplemented by temperature dependent nuclear magnetic resonance H-1 and Li-7 line width measurements.
Resumo:
Carbon disulfide reacts with azide ion to form the 1,2,3,4-thiatriazolinethionate ion and not the acyclic azido dithiocarbonate ion as previously reported. A series of salts of thiatriazoline have been prepared and none shows evidence for the presence of the azido group. Esters of thiatriazolinethione prepared by the reaction of the sodium salt with alkyl or acyl halides have been found to be either 5-(substituted) mercapto-1,2,3,4-thiatriazoles or 4-substituted 1,2,3,4-thiatriazoline-5-thiones. These structures have been assigned on the basis of degradative and spectroscopic evidence. The chemistry of the so-called azidodithiocarbonates has been reinterpreted in terms of the thiatriazole structure.
Resumo:
The role of oxide surface chemical composition and solvent on ion solvation and ion transport of ``soggy sand'' electrolytes are discussed here. A ``soggy sand'' electrolyte system comprising dispersions of hydrophilic/hydrophobic functionalized aerosil silica in lithium perchlorate methoxy polyethylene glycol solution was employed for the study. Static and dynamic rheology measurements show formation of an attractive particle network in the case of the composite with unmodified aerosil silica (i.e., with surface silanol groups) as well as composites with hydrophobic alkane groups. While particle network in the composite with hydrophilic aerosil silica (unmodified) were due to hydrogen bonding, hydrophobic aerosil silica particles were held together via van der Waals forces. The network strength in the latter case (i.e., for hydrophobic composites) were weaker compared with the composite with unmodified aerosil silica. Both unmodified silica as well as hydrophobic silica composites displayed solid-like mechanical strength. No enhancement in ionic conductivity compared to the liquid electrolyte was observed in the case of the unmodified silica. This was attributed to the existence of a very strong particle network, which led to the ``expulsion'' of all conducting entities from the interfacial region between adjacent particles. The ionic conductivity for composites with hydrophobic aerosil particles displayed ionic conductivity dependent on the size of the hydrophobic chemical moiety. No spanning attractive particle network was observed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol). The composite resembled a sol, and no percolation in ionic conductivity was observed.
Resumo:
Binary room temperature molten electrolytes based on acetamide and zinc perchlorate have been prepared and characterized. The electrolytes are found to be highly zinc ion-conducting with very favorable physicochemical and electrochemical characteristics. Raman and infrared spectroscopic studies reveal the presence of large free-ion concentration in the molten liquid. This is corroborated by the high conductivity observed under ambient conditions. Rechargeable zinc batteries assembled using gamma-MnO2 as the cathode and Zn as the anode with the molten electrolyte show high discharge capacities over several cycles, indicating excellent reversibility. This unique class of acetamide-based, room temperature molten liquids may become viable and green alternative electrolytes for rechargeable zinc-based secondary batteries. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
Nonconventional heptacoordination in combination with efficient magnetic exchange coupling is shown to yield a 1-D heteronuclear {(FeNbIV)-Nb-II} compound with remarkable magnetic features when compared to other Fe(II)-based single chain magnets (SCM). Cyano-bridged heterometallic {3d-4d} and {3d-5d} chains are formed upon assembling Fe(II) bearing a pentadentate macrocycle as the blocking ligand with octacyano metallates, [M(CN)(8)](4-) (M = Nb-IV, Mo-IV, W-IV.) X-ray diffraction (single-crystal and powder) measurements reveal that the [{(H2O)Fe(L-1)}{M(CN)(8)}{Fe(L-1)}](infinity) architectures consist of isomorphous 1-D polymeric structures based on the alternation of {Fe(L-1)}(2+) and {M(CN)(8)}(4-) units (L-1 stands for the pentadentate macrocycle). Analysis of the magnetic susceptibility behavior revealed cyano-bridged {Fe-Nb} exchange interaction to be antiferromagnetic with J = -20 cm(-1) deduced from fitting an Ising model taking into account the noncollinear spin arrangement. For this ferrimagnetic chain a slow relaxation of its magnetization is observed at low temperature revealing a SCM behavior with Delta/k(B) = 74 K and tau(0) = 4.6 x 10(-11) s. The M versus H behavior exhibits a hysteresis loop with a coercive field of 4 kOe at 1 K and reveals at 380 mK magnetic avalanche processes, i.e., abrupt reversals in magnetization as H is varied. The origin of these characteristics is attributed to the combination of efficient {Fe-Nb} exchange interaction and significant anisotropy of the {Fe(L-1)) unit. High field EPR and magnetization experiments have revealed for the parent compound [Fe(L-1)(H2O)(2)]Cl-2 a negative zero field splitting parameter of D approximate to -17 cm(-1). The crystal structure, magnetic behavior, and Mossbauer data for [Fe(L-1)(H2O)(2)]Cl-2 are also reported.
Resumo:
Nanocrystalline Li4Ti5O12 (LTO) crystallizing in cubic spinel-phase has been synthesized by single-step-solution-combustion method in less than one minute. LTO particles thus synthesized are flaky and highly porous in nature with a surface area of 12 m(2)/g. Transmission electron micrographs indicate the primary particles to be agglomerated crystallites of varying size between 20 and 50 nm with a 3-dimensional interconnected porous network. During their galvanostatic charge-discharge at varying rates, LTO electrodes yield a capacity value close to the theoretical value of 175 mA h/g at C/2 rate. The electrodes also exhibit promising capacity retention with little capacity loss over 100 cycles at varying discharge rates together with attractive discharge-rate capabilities yielding capacity values of 140 mA h/g and 70 mA h/g at 10 and 100 C discharge rates, respectively. The ameliorated electrode-performance is ascribed to nano and highly porous morphology of the electrodes that provide short diffusion-paths for Li in conjunction with electrolyte percolation through the electrode pores ensuring a high flux of Li.
Resumo:
A number of AgI based fast ion conducting glasses, with a general formula AgI---Ag2O---MxOy (MxOy=MoO3, SeO3, WO3, V2O5, P2O5, GeO2, B2O3, As2O3, CrO3) have been studied. A chemical approach is made to investigate the origin of fast ion conduction in these glasses. An index known as Image tructural Image npinning Image umber, SUN (S), has been defined for the purpose, based on the unscreened nuclear charge of silver ions and the equilibrium lectronegativities of the halide-oxyanion matrix in these glasses. The variation of the glass transition temperature, Tg, conductivity, σ, and the energy of activation, Ea, with the concentration of AgI are discussed in the light of the structural unpinning number. Conductivities increase uniformly in any given glass series as a smooth function of S and level off at very high values. The entire range of conductivity appears to vary as ln Image , where ln σ0 corresponds roughly to the conductivity of the hypothetical AgI glass and “a” is a constant which could be obtained as the slope in the graph of ln Ea versus S. It is suggested that the increase in the concentration of AgI beyond 75–80 mole% in the glass is not advantageous from the conductivity point of view.