93 resultados para Hilbert schemes of points Poincaré polynomial Betti numbers Goettsche formula
Resumo:
Real-time simulation of deformable solids is essential for some applications such as biological organ simulations for surgical simulators. In this work, deformable solids are approximated to be linear elastic, and an easy and straight forward numerical technique, the Finite Point Method (FPM), is used to model three dimensional linear elastostatics. Graphics Processing Unit (GPU) is used to accelerate computations. Results show that the Finite Point Method, together with GPU, can compute three dimensional linear elastostatic responses of solids at rates suitable for real-time graphics, for solids represented by reasonable number of points.
Resumo:
Given a set of points P ⊆ R2, a conflict-free coloring of P w.r.t. rectangle ranges is an assignment of colors to points of P, such that each nonempty axisparallel rectangle T in the plane contains a point whose color is distinct from all other points in P ∩ T . This notion has been the subject of recent interest and is motivated by frequency assignment in wireless cellular networks: one naturally would like to minimize the number of frequencies (colors) assigned to base stations (points) such that within any range (for instance, rectangle), there is no interference. We show that any set of n points in R2 can be conflict-free colored with O(nβ∗+o(1)) colors in expected polynomial time, where β∗ = 3−√5 2 < 0.382.
Resumo:
A computational tool called ``Directional Diffusion Regulator (DDR)'' is proposed to bring forth real multidimensional physics into the upwind discretization in some numerical schemes of hyperbolic conservation laws. The direction based regulator when used with dimension splitting solvers, is set to moderate the excess multidimensional diffusion and hence cause genuine multidimensional upwinding like effect. The basic idea of this regulator driven method is to retain a full upwind scheme across local discontinuities, with the upwind bias decreasing smoothly to a minimum in the farthest direction. The discontinuous solutions are quantified as gradients and the regulator parameter across a typical finite volume interface or a finite difference interpolation point is formulated based on fractional local maximum gradient in any of the weak solution flow variables (say density, pressure, temperature, Mach number or even wave velocity etc.). DDR is applied to both the non-convective as well as whole unsplit dissipative flux terms of some numerical schemes, mainly of Local Lax-Friedrichs, to solve some benchmark problems describing inviscid compressible flow, shallow water dynamics and magneto-hydrodynamics. The first order solutions consistently improved depending on the extent of grid non-alignment to discontinuities, with the major influence due to regulation of non-convective diffusion. The application is also experimented on schemes such as Roe, Jameson-Schmidt-Turkel and some second order accurate methods. The consistent improvement in accuracy either at moderate or marked levels, for a variety of problems and with increasing grid size, reasonably indicate a scope for DDR as a regular tool to impart genuine multidimensional upwinding effect in a simpler framework. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We report on the single crystal growth of 50% Sr and Y doped multiferroic DyMnO3 using optical floating zone technique. A comparison of the effect of growth ambience and of chemical substitution on the crystal structure of DyMnO3 is attempted. It is observed that DyMnO3 adopts Pm3m cubic structure with 50% Sr doping whereas with 50% Y doping, the crystal structure is hexagonal P6(3)cm. Orthorhombic Pnma structure is adopted by DyMnO3 when grown in air, whereas hexagonal P6(3)cm structure is obtained when grown under the ambience of argon. The structural polymorphism is discussed in terms of difference in ionic sizes of Sr, Y and Dy, comparable Gibbs free energies and coordination schemes of surrounding oxygens for hexagonal and orthorhombic structures of DyMnO3. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Let where be a set of points in d-dimensional space with a given metric rho. For a point let r (p) be the distance of p with respect to rho from its nearest neighbor in Let B(p,r (p) ) be the open ball with respect to rho centered at p and having the radius r (p) . We define the sphere-of-influence graph (SIG) of as the intersection graph of the family of sets Given a graph G, a set of points in d-dimensional space with the metric rho is called a d-dimensional SIG-representation of G, if G is isomorphic to the SIG of It is known that the absence of isolated vertices is a necessary and sufficient condition for a graph to have a SIG-representation under the L (a)-metric in some space of finite dimension. The SIG-dimension under the L (a)-metric of a graph G without isolated vertices is defined to be the minimum positive integer d such that G has a d-dimensional SIG-representation under the L (a)-metric. It is denoted by SIG (a)(G). We study the SIG-dimension of trees under the L (a)-metric and almost completely answer an open problem posed by Michael and Quint (Discrete Appl Math 127:447-460, 2003). Let T be a tree with at least two vertices. For each let leaf-degree(v) denote the number of neighbors of v that are leaves. We define the maximum leaf-degree as leaf-degree(x). Let leaf-degree{(v) = alpha}. If |S| = 1, we define beta(T) = alpha(T) - 1. Otherwise define beta(T) = alpha(T). We show that for a tree where beta = beta (T), provided beta is not of the form 2 (k) - 1, for some positive integer k a parts per thousand yen 1. If beta = 2 (k) - 1, then We show that both values are possible.
Resumo:
The aim of this paper is to obtain certain characterizations for the image of a Sobolev space on the Heisenberg group under the heat kernel transform. We give three types of characterizations for the image of a Sobolev space of positive order H-m (H-n), m is an element of N-n, under the heat kernel transform on H-n, using direct sum and direct integral of Bergmann spaces and certain unitary representations of H-n which can be realized on the Hilbert space of Hilbert-Schmidt operators on L-2 (R-n). We also show that the image of Sobolev space of negative order H-s (H-n), s(> 0) is an element of R is a direct sum of two weighted Bergman spaces. Finally, we try to obtain some pointwise estimates for the functions in the image of Schwartz class on H-n under the heat kernel transform. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
We introduce k-stellated spheres and consider the class W-k(d) of triangulated d-manifolds, all of whose vertex links are k-stellated, and its subclass W-k*; (d), consisting of the (k + 1)-neighbourly members of W-k(d). We introduce the mu-vector of any simplicial complex and show that, in the case of 2-neighbourly simplicial complexes, the mu-vector dominates the vector of Betti numbers componentwise; the two vectors are equal precisely for tight simplicial complexes. We are able to estimate/compute certain alternating sums of the components of the mu-vector of any 2-neighbourly member of W-k(d) for d >= 2k. As a consequence of this theory, we prove a lower bound theorem for such triangulated manifolds, and we determine the integral homology type of members of W-k*(d) for d >= 2k + 2. As another application, we prove that, when d not equal 2k + 1, all members of W-k*(d) are tight. We also characterize the tight members of W-k*(2k + 1) in terms of their kth Betti numbers. These results more or less answer a recent question of Effenberger, and also provide a uniform and conceptual tightness proof for all except two of the known tight triangulated manifolds. We also prove a lower bound theorem for homology manifolds in which the members of W-1(d) provide the equality case. This generalizes a result (the d = 4 case) due to Walkup and Kuhnel. As a consequence, it is shown that every tight member of W-1 (d) is strongly minimal, thus providing substantial evidence in favour of a conjecture of Kuhnel and Lutz asserting that tight homology manifolds should be strongly minimal. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Rice landraces are lineages developed by farmers through artificial selection during the long-term domestication process. Despite huge potential for crop improvement, they are largely understudied in India. Here, we analyse a suite of phenotypic characters from large numbers of Indian landraces comprised of both aromatic and non-aromatic varieties. Our primary aim was to investigate the major determinants of diversity, the strength of segregation among aromatic and non-aromatic landraces as well as that within aromatic landraces. Using principal component analysis, we found that grain length, width and weight, panicle weight and leaf length have the most substantial contribution. Discriminant analysis can effectively distinguish the majority of aromatic from non-aromatic landraces. More interestingly, within aromatic landraces long-grain traditional Basmati and short-grain non-Basmati aromatics remain morphologically well differentiated. The present research emphasizes the general patterns of phenotypic diversity and finds out the most important characters. It also confirms the existence of very unique short-grain aromatic landraces, perhaps carrying signatures of independent origin of an additional aroma quantitative trait locus in the indica group, unlike introgression of specific alleles of the BADH2 gene from the japonica group as in Basmati. We presume that this parallel origin and evolution of aroma in short-grain indica landraces are linked to the long history of rice domestication that involved inheritance of several traits from Oryza nivara, in addition to O. rufipogon. We conclude with a note that the insights from the phenotypic analysis essentially comprise the first part, which will likely be validated with subsequent molecular analysis.
Resumo:
Tetracene is an important conjugated molecule for device applications. We have used the diagrammatic valence bond method to obtain the desired states, in a Hilbert space of about 450 million singlets and 902 million triplets. We have also studied the donor/acceptor (D/A)-substituted tetracenes with D and A groups placed symmetrically about the long axis of the molecule. In these cases, by exploiting a new symmetry, which is a combination of C-2 symmetry and electron-hole symmetry, we are able to obtain their low-lying states. In the case of substituted tetracene, we find that optically allowed one-photon excitation gaps reduce with increasing D/A strength, while the lowest singlet triplet gap is only wealdy affected. In all the systems we have studied, the excited singlet state, S-i, is at more than twice the energy of the lowest triplet state and the second triplet is very close to the S-1 state. Thus, donor-acceptor-substituted tetracene could be a good candidate in photovoltaic device application as it satisfies energy criteria for singlet fission. We have also obtained the model exact second harmonic generation (SHG) coefficients using the correction vector method, and we find that the SHG responses increase with the increase in D/A strength.
Resumo:
We attempt to provide a quantitative theoretical explanation for the observations that Ca II H/K emission and X-ray emission from solar-like stars increase with decreasing Rossby number (i.e., with faster rotation). Assuming that these emissions are caused by magnetic cycles similar to the sunspot cycle, we construct flux transport dynamo models of 1M(circle dot) stars rotating with different rotation periods. We first compute the differential rotation and the meridional circulation inside these stars from a mean-field hydrodynamics model. Then these are substituted in our dynamo code to produce periodic solutions. We find that the dimensionless amplitude f(m) of the toroidal flux through the star increases with decreasing rotation period. The observational data can be matched if we assume the emissions to go as the power 3-4 of f(m). Assuming that the Babcock-Leighton mechanism saturates with increasing rotation, we can provide an explanation for the observed saturation of emission at low Rossby numbers. The main failure of our model is that it predicts an increase of the magnetic cycle period with increasing rotation rate, which is the opposite of what is found observationally. Much of our calculations are based on the assumption that the magnetic buoyancy makes the magnetic flux tubes rise radially from the bottom of the convection zone. Taking into account the fact that the Coriolis force diverts the magnetic flux tubes to rise parallel to the rotation axis in rapidly rotating stars, the results do not change qualitatively.
Resumo:
This study examines the effect of electric field on energy absorption capacity of carbon nanotube forests (CNTFs), comprising of vertically aligned multiwalled carbon nanotubes, under both quasistatic (strain rate, (epsilon) over dot = 10(-3) s(-1)) and dynamic ((epsilon) over dot = similar to 10(3) s(-1)) loading conditions. Under quasistatic condition, the CNTFs were cyclically loaded and unloaded while electric field was applied along the length of carbon nanotube (CNT) either throughout the loading cycle or explicitly during either the loading or the unloading segment. The energy absorbed per cycle by CNTF increased monotonically with electric field when the field was applied only during the loading segment: A 7 fold increase in the energy absorption capacity was registered at an electric field of 1 kV/m whereas no significant change in it was noted for other schemes of electro-mechanical loading. The energy absorption capacity of CNTF under dynamic loading condition also increased monotonically with electric field; however, relative to the quasistatic condition, less pronounced effect was observed. This intriguing strain rate dependent effect of electric field on energy absorption capacity of CNTF is explained in terms of electric field induced strengthening of CNTF, originating from the time dependent electric field induced polarization of CNT. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We study the onset of magnetoconvection between two infinite horizontal planes subject to a vertical magnetic field aligned with background rotation. In order to gain insight into the convection taking place in the Earth's tangent cylinder, we target regimes of asymptotically strong rotation. The critical Rayleigh number Ra-c and critical wavenumber a(c) are computed numerically by solving the linear stability problem in a systematic way, with either stress-free or no-slip kinematic boundary conditions. A parametric study is conducted, varying the Ekman number E (ratio of viscous to Coriolis forces) and the Elsasser number. (ratio of the Lorentz force to the Coriolis force). E is varied from 10(-9) to 10(-2) and. from 10(-3) to 1. For a wide range of thermal and magnetic Prandtl numbers, our results verify and confirm previous experimental and theoretical results showing the existence of two distinct unstable modes at low values of E-one being controlled by the magnetic field, the other being controlled by viscosity (often called the viscous mode). It is shown that oscillatory onset does not occur in the range of parameters we are interested in. Asymptotic scalings for the onset of these modes are numerically confirmed and their domain of validity is precisely quantified. We show that with no-slip boundary conditions, the asymptotic behavior is reached for E < 10(-6) and establish a map in the (E, Lambda) plane. We distinguish regions where convection sets in either through the magnetic mode or through the viscous mode. Our analysis gives the regime in which the transition between magnetic and viscous modes may be observed. We also show that within the asymptotic regime, the role played by the kinematic boundary conditions is minimal. (C) 2015 AIP Publishing LLC.
Resumo:
In the POSSIBLE WINNER problem in computational social choice theory, we are given a set of partial preferences and the question is whether a distinguished candidate could be made winner by extending the partial preferences to linear preferences. Previous work has provided, for many common voting rules, fixed parameter tractable algorithms for the POSSIBLE WINNER problem, with number of candidates as the parameter. However, the corresponding kernelization question is still open and in fact, has been mentioned as a key research challenge 10]. In this paper, we settle this open question for many common voting rules. We show that the POSSIBLE WINNER problem for maximin, Copeland, Bucklin, ranked pairs, and a class of scoring rules that includes the Borda voting rule does not admit a polynomial kernel with the number of candidates as the parameter. We show however that the COALITIONAL MANIPULATION problem which is an important special case of the POSSIBLE WINNER problem does admit a polynomial kernel for maximin, Copeland, ranked pairs, and a class of scoring rules that includes the Borda voting rule, when the number of manipulators is polynomial in the number of candidates. A significant conclusion of our work is that the POSSIBLE WINNER problem is harder than the COALITIONAL MANIPULATION problem since the COALITIONAL MANIPULATION problem admits a polynomial kernel whereas the POSSIBLE WINNER problem does not admit a polynomial kernel. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Polymerized carbon nanotubes (CNTs) are promising materials for polymer-based electronics and electro-mechanical sensors. The advantage of having a polymer nanolayer on CNTs widens the scope for functionalizing it in various ways for polymer electronic devices. However, in this paper, we show for the first time experimentally that, due to a resistive polymer layer having carbon nanoparticle inclusions and polymerized carbon nanotubes, an interesting dynamics can be exploited. We first show analytically that the relative change in the resistance of a single isolated semiconductive nanotube is directly proportional to the axial and torsional dynamic strains, when the strains are small, whereas, in polymerized CNTs, the viscoelasticity of the polymer and its effective electrical polarization give rise to nonlinear effects as a function of frequency and bias voltage. A simplified formula is derived to account for these effects and validated in the light of experimental results. CNT–polymer-based channels have been fabricated on a PZT substrate. Strain sensing performance of such a one-dimensional channel structure is reported. For a single frequency modulated sine pulse as input, which is common in elastic and acoustic wave-based diagnostics, imaging, microwave devices, energy harvesting, etc, the performance of the fabricated channel has been found to be promising.
Resumo:
With the extension of the work of the preceding paper, the relativistic front form for Maxwell's equations for electromagnetism is developed and shown to be particularly suited to the description of paraxial waves. The generators of the Poincaré group in a form applicable directly to the electric and magnetic field vectors are derived. It is shown that the effect of a thin lens on a paraxial electromagnetic wave is given by a six-dimensional transformation matrix, constructed out of certain special generators of the Poincaré group. The method of construction guarantees that the free propagation of such waves as well as their transmission through ideal optical systems can be described in terms of the metaplectic group, exactly as found for scalar waves by Bacry and Cadilhac. An alternative formulation in terms of a vector potential is also constructed. It is chosen in a gauge suggested by the front form and by the requirement that the lens transformation matrix act locally in space. Pencils of light with accompanying polarization are defined for statistical states in terms of the two-point correlation function of the vector potential. Their propagation and transmission through lenses are briefly considered in the paraxial limit. This paper extends Fourier optics and completes it by formulating it for the Maxwell field. We stress that the derivations depend explicitly on the "henochromatic" idealization as well as the identification of the ideal lens with a quadratic phase shift and are heuristic to this extent.