65 resultados para Genetic Algorithm optimization
Resumo:
Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed, A brief overview of Genetic Algorithms (GAs) and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance pf our GA-based approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger. To account for the relatively quick convergence of the gradient descent methods, we analyze the landscape of the COP-based cost function. We prove that the cost function is unimodal in the search space. This feature makes the cost function amenable to optimization by gradient-descent techniques as compared to random search methods such as Genetic Algorithms.
Resumo:
A natural velocity field method for shape optimization of reinforced concrete (RC) flexural members has been demonstrated. The possibility of shape optimization by modifying the shape of an initially rectangular section, in addition to variation of breadth and depth along the length, has been explored. Necessary shape changes have been computed using the sequential quadratic programming (SQP) technique. Genetic algorithm (Goldberg and Samtani 1986) has been used to optimize the diameter and number of main reinforcement bars. A limit-state design approach has been adopted for the nonprismatic RC sections. Such relevant issues as formulation of optimization problem, finite-element modeling, and solution procedure have been described. Three design examples-a simply supported beam, a cantilever beam, and a two-span continuous beam, all under uniformly distributed loads-have been optimized. The results show a significant savings (40-56%) in material and cost and also result in aesthetically pleasing structures. This procedure will lead to considerable cost saving, particularly in cases of mass-produced precast members and a heavy cast-in-place member such as a bridge girder.
Resumo:
Swarm intelligence algorithms are applied for optimal control of flexible smart structures bonded with piezoelectric actuators and sensors. The optimal locations of actuators/sensors and feedback gain are obtained by maximizing the energy dissipated by the feedback control system. We provide a mathematical proof that this system is uncontrollable if the actuators and sensors are placed at the nodal points of the mode shapes. The optimal locations of actuators/sensors and feedback gain represent a constrained non-linear optimization problem. This problem is converted to an unconstrained optimization problem by using penalty functions. Two swarm intelligence algorithms, namely, Artificial bee colony (ABC) and glowworm swarm optimization (GSO) algorithms, are considered to obtain the optimal solution. In earlier published research, a cantilever beam with one and two collocated actuator(s)/sensor(s) was considered and the numerical results were obtained by using genetic algorithm and gradient based optimization methods. We consider the same problem and present the results obtained by using the swarm intelligence algorithms ABC and GSO. An extension of this cantilever beam problem with five collocated actuators/sensors is considered and the numerical results obtained by using the ABC and GSO algorithms are presented. The effect of increasing the number of design variables (locations of actuators and sensors and gain) on the optimization process is investigated. It is shown that the ABC and GSO algorithms are robust and are good choices for the optimization of smart structures.
Resumo:
Stirred tank bioreactors, employed in the production of a variety of biologically active chemicals, are often operated in batch, fed-batch, and continuous modes of operation. The optimal design of bioreactor is dependent on the kinetics of the biological process, as well as the performance criteria (yield, productivity, etc.) under consideration. In this paper, a general framework is proposed for addressing the two key issues related to the optimal design of a bioreactor, namely, (i) choice of the best operating mode and (ii) the corresponding flow rate trajectories. The optimal bioreactor design problem is formulated with initial conditions and inlet and outlet flow rate trajectories as decision variables to maximize more than one performance criteria (yield, productivity, etc.) as objective functions. A computational methodology based on genetic algorithm approach is developed to solve this challenging multiobjective optimization problem with multiple decision variables. The applicability of the algorithm is illustrated by solving two challenging problems from the bioreactor optimization literature.
Resumo:
This paper presents a decentralized/peer-to-peer architecture-based parallel version of the vector evaluated particle swarm optimization (VEPSO) algorithm for multi-objective design optimization of laminated composite plates using message passing interface (MPI). The design optimization of laminated composite plates being a combinatorially explosive constrained non-linear optimization problem (CNOP), with many design variables and a vast solution space, warrants the use of non-parametric and heuristic optimization algorithms like PSO. Optimization requires minimizing both the weight and cost of these composite plates, simultaneously, which renders the problem multi-objective. Hence VEPSO, a multi-objective variant of the PSO algorithm, is used. Despite the use of such a heuristic, the application problem, being computationally intensive, suffers from long execution times due to sequential computation. Hence, a parallel version of the PSO algorithm for the problem has been developed to run on several nodes of an IBM P720 cluster. The proposed parallel algorithm, using MPI's collective communication directives, establishes a peer-to-peer relationship between the constituent parallel processes, deviating from the more common master-slave approach, in achieving reduction of computation time by factor of up to 10. Finally we show the effectiveness of the proposed parallel algorithm by comparing it with a serial implementation of VEPSO and a parallel implementation of the vector evaluated genetic algorithm (VEGA) for the same design problem. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this article, we study the thermal performance of phase-change material (PCM)-based heat sinks under cyclic heat load and subjected to melt convection. Plate fin type heat sinks made of aluminum and filled with PCM are considered in this study. The heat sink is heated from the bottom. For a prescribed value of heat flux, design of such a heat sink can be optimized with respect to its geometry, with the objective of minimizing the temperature rise during heating and ensuring complete solidification of PCM at the end of the cooling period for a given cycle. For given length and base plate thickness of a heat sink, a genetic algorithm (GA)-based optimization is carried out with respect to geometrical variables such as fin thickness, fin height, and the number of fins. The thermal performance of the heat sink for a given set of parameters is evaluated using an enthalpy-based heat transfer model, which provides the necessary data for the optimization algorithm. The effect of melt convection is studied by taking two cases, one without melt convection (conduction regime) and the other with convection. The results show that melt convection alters the results of geometrical optimization.
Resumo:
Experimental quantum simulation of a Hamiltonian H requires unitary operator decomposition (UOD) of its evolution unitary U = exp(-iHt) in terms of native unitary operators of the experimental system. Here, using a genetic algorithm, we numerically evaluate the most generic UOD (valid over a continuous range of Hamiltonian parameters) of the unitary operator U, termed fidelity-profile optimization. The optimization is obtained by systematically evaluating the functional dependence of experimental unitary operators (such as single-qubit rotations and time-evolution unitaries of the system interactions) to the Hamiltonian (H) parameters. Using this technique, we have solved the experimental unitary decomposition of a controlled-phase gate (for any phase value), the evolution unitary of the Heisenberg XY interaction, and simulation of the Dzyaloshinskii-Moriya (DM) interaction in the presence of the Heisenberg XY interaction. Using these decompositions, we studied the entanglement dynamics of a Bell state in the DM interaction and experimentally verified the entanglement preservation procedure of Hou et al. Ann. Phys. (N.Y.) 327, 292 (2012)] in a nuclear magnetic resonance quantum information processor.
Resumo:
Among the multiple advantages and applications of remote sensing, one of the most important uses is to solve the problem of crop classification, i.e., differentiating between various crop types. Satellite images are a reliable source for investigating the temporal changes in crop cultivated areas. In this letter, we propose a novel bat algorithm (BA)-based clustering approach for solving crop type classification problems using a multispectral satellite image. The proposed partitional clustering algorithm is used to extract information in the form of optimal cluster centers from training samples. The extracted cluster centers are then validated on test samples. A real-time multispectral satellite image and one benchmark data set from the University of California, Irvine (UCI) repository are used to demonstrate the robustness of the proposed algorithm. The performance of the BA is compared with two other nature-inspired metaheuristic techniques, namely, genetic algorithm and particle swarm optimization. The performance is also compared with the existing hybrid approach such as the BA with K-means. From the results obtained, it can be concluded that the BA can be successfully applied to solve crop type classification problems.
Resumo:
The role of melt convection oil the performance of beat sinks with Phase Change Material (PCM) is presented in this paper. The beat sink consists of aluminum plate fins embedded in PCM and heat flux is supplied from the bottom. The design of such a heat sink requires optimization with respect to its geometrical parameters. The objective of the optimization is to maximize the heat sink operation time for the prescribed heat flux and the critical chip temperature. The parameters considered for optimization are fin number and fill thickness. The height and base plate thickness of heat sink are kept constant in the present analysis. An enthalpy based CFD model is developed, which is capable Of Simulating phase change and associated melt convection. The CFD model is Coupled with Genetic Algorithm (GA) for carrying out the optimization. Two cases are considered, one without melt convection (conduction regime) and the other with convection. It is found that the geometrical optimizations of heat sinks are different for the two cases, indicating the importance of inch convection in the design of heat sinks with PCMs.
Resumo:
The optimal design of a multiproduct batch chemical plant is formulated as a multiobjective optimization problem, and the resulting constrained mixed-integer nonlinear program (MINLP) is solved by the nondominated sorting genetic algorithm approach (NSGA-II). By putting bounds on the objective function values, the constrained MINLP problem can be solved efficiently by NSGA-II to generate a set of feasible nondominated solutions in the range desired by the decision-maker in a single run of the algorithm. The evolution of the entire set of nondominated solutions helps the decision-maker to make a better choice of the appropriate design from among several alternatives. The large set of solutions also provides a rich source of excellent initial guesses for solution of the same problem by alternative approaches to achieve any specific target for the objective functions
Resumo:
A fuzzy system is developed using a linearized performance model of the gas turbine engine for performing gas turbine fault isolation from noisy measurements. By using a priori information about measurement uncertainties and through design variable linking, the design of the fuzzy system is posed as an optimization problem with low number of design variables which can be solved using the genetic algorithm in considerably low amount of computer time. The faults modeled are module faults in five modules: fan, low pressure compressor, high pressure compressor, high pressure turbine and low pressure turbine. The measurements used are deviations in exhaust gas temperature, low rotor speed, high rotor speed and fuel flow from a base line 'good engine'. The genetic fuzzy system (GFS) allows rapid development of the rule base if the fault signatures and measurement uncertainties change which happens for different engines and airlines. In addition, the genetic fuzzy system reduces the human effort needed in the trial and error process used to design the fuzzy system and makes the development of such a system easier and faster. A radial basis function neural network (RBFNN) is also used to preprocess the measurements before fault isolation. The RBFNN shows significant noise reduction and when combined with the GFS leads to a diagnostic system that is highly robust to the presence of noise in data. Showing the advantage of using a soft computing approach for gas turbine diagnostics.
Resumo:
This paper presents a genetic algorithm (GA) model for obtaining an optimal operating policy and optimal crop water allocations from an irrigation reservoir. The objective is to maximize the sum of the relative yields from all crops in the irrigated area. The model takes into account reservoir inflow, rainfall on the irrigated area, intraseasonal competition for water among multiple crops, the soil moisture dynamics in each cropped area, the heterogeneous nature of soils. and crop response to the level of irrigation applied. The model is applied to the Malaprabha single-purpose irrigation reservoir in Karnataka State, India. The optimal operating policy obtained using the GA is similar to that obtained by linear programming. This model can be used for optimal utilization of the available water resources of any reservoir system to obtain maximum benefits.
Resumo:
Employing multiple base stations is an attractive approach to enhance the lifetime of wireless sensor networks. In this paper, we address the fundamental question concerning the limits on the network lifetime in sensor networks when multiple base stations are deployed as data sinks. Specifically, we derive upper bounds on the network lifetime when multiple base stations are employed, and obtain optimum locations of the base stations (BSs) that maximize these lifetime bounds. For the case of two BSs, we jointly optimize the BS locations by maximizing the lifetime bound using a genetic algorithm based optimization. Joint optimization for more number of BSs is complex. Hence, for the case of three BSs, we optimize the third BS location using the previously obtained optimum locations of the first two BSs. We also provide simulation results that validate the lifetime bounds and the optimum locations of the BSs.
Resumo:
The presence of residual chlorine and organic matter govern the bacterial regrowth within a water distribution system. The bacterial growth model is essential to predict the spatial and temporal variation of all these substances throughout the system. The parameters governing the bacterial growth and biodegradable dissolved organic carbon (BDOC) utilization are difficult to determine by experimentation. In the present study, the estimation of these parameters is addressed by using simulation-optimization procedure. The optimal solution by genetic algorithm (GA) has indicated that the proper combination of parameter values are significant rather than correct individual values. The applicability of the model is illustrated using synthetic data generated by introducing noise in to the error-free measurements. The GA was found to be a potential tool in estimating the parameters controlling the bacterial growth and BDOC utilization. Further, the GA was also used for evaluating the sensitivity issues relating parameter values and objective function. It was observed that mu and k(cl) are more significant and dominating compared to the other parameters. But the magnitude of the parameters is also an important issue in deciding the dominance of a particular parameter. GA is found to be a useful tool in autocalibration of bacterial growth model and a sensitivity study of parameters.
Resumo:
In this paper, the role of melt convection on the performance of heat sinks with phase change material (PCM) is investigated numerically. The heat sink consists of aluminum plate fins embedded in PCM, and is subjected to heat flux supplied from the bottom. A single-domain enthalpy-based CFD model is developed, which is capable of simulating the phase change process and the associated melt convection. The CFD model is coupled with a genetic algorithm for carrying out the optimization. Two cases are considered, namely, one without melt convection (i.e., conduction heat transfer analysis), and the other with convection. It is found that the geometrical optimizations of heat sinks are different for the two cases, indicating the importance of melt convection in the design of heat sinks with PCMs. In the case of conduction analysis, the optimum width of half fin (i.e., sum of half pitch and half fin thickness) is a constant, which is in good agreement with results reported in the literature. On the other hand, if melt convection is considered, the optimum half fin width depends on the effective thermal diffusivity due to conduction and convection. With melt convection, the optimized design results in a significant improvement of operational time.