43 resultados para Game of Thrones


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the use of reinforcement learning (RL) techniques to the problem of determining dynamic prices in an electronic retail market. As representative models, we consider a single seller market and a two seller market, and formulate the dynamic pricing problem in a setting that easily generalizes to markets with more than two sellers. We first formulate the single seller dynamic pricing problem in the RL framework and solve the problem using the Q-learning algorithm through simulation. Next we model the two seller dynamic pricing problem as a Markovian game and formulate the problem in the RL framework. We solve this problem using actor-critic algorithms through simulation. We believe our approach to solving these problems is a promising way of setting dynamic prices in multi-agent environments. We illustrate the methodology with two illustrative examples of typical retail markets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A central scheduling problem in wireless communications is that of allocating resources to one of many mobile stations that have a common radio channel. Much attention has been given to the design of efficient and fair scheduling schemes that are centrally controlled by a base station (BS) whose decisions depend on the channel conditions reported by each mobile. The BS is the only entity taking decisions in this framework. The decisions are based on the reports of mobiles on their radio channel conditions. In this paper, we study the scheduling problem from a game-theoretic perspective in which some of the mobiles may be noncooperative or strategic, and may not necessarily report their true channel conditions. We model this situation as a signaling game and study its equilibria. We demonstrate that the only Perfect Bayesian Equilibria (PBE) of the signaling game are of the babbling type: the noncooperative mobiles send signals independent of their channel states, the BS simply ignores them, and allocates channels based only on the prior information on the channel statistics. We then propose various approaches to enforce truthful signaling of the radio channel conditions: a pricing approach, an approach based on some knowledge of the mobiles' policies, and an approach that replaces this knowledge by a stochastic approximations approach that combines estimation and control. We further identify other equilibria that involve non-truthful signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we address stochastic differential games of mixed type with both control and stopping times. Under standard assumptions, we show that the value of the game can be characterized as the unique viscosity solution of corresponding Hamilton-Jacobi-Isaacs (HJI) variational inequalities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the question of determining locations of base stations (BSs) that may belong to the same or to competing service providers. We take into account the impact of these decisions on the behavior of intelligent mobile terminals that can connect to the base station that offers the best utility. The signal-to-interference-plus-noise ratio (SINR) is used as the quantity that determines the association. We first study the SINR association-game: We determine the cells corresponding to each base stations, i.e., the locations at which mobile terminals prefer to connect to a given base station than to others. We make some surprising observations: 1) displacing a base station a little in one direction may result in a displacement of the boundary of the corresponding cell to the opposite direction; 2) a cell corresponding to a BS may be the union of disconnected subcells. We then study the hierarchical equilibrium in the combined BS location and mobile association problem: We determine where to locate the BSs so as to maximize the revenues obtained at the induced SINR mobile association game. We consider the cases of single frequency band and two frequency bands of operation. Finally, we also consider hierarchical equilibria in two frequency systems with successive interference cancellation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we develop a game theoretic approach for clustering features in a learning problem. Feature clustering can serve as an important preprocessing step in many problems such as feature selection, dimensionality reduction, etc. In this approach, we view features as rational players of a coalitional game where they form coalitions (or clusters) among themselves in order to maximize their individual payoffs. We show how Nash Stable Partition (NSP), a well known concept in the coalitional game theory, provides a natural way of clustering features. Through this approach, one can obtain some desirable properties of the clusters by choosing appropriate payoff functions. For a small number of features, the NSP based clustering can be found by solving an integer linear program (ILP). However, for large number of features, the ILP based approach does not scale well and hence we propose a hierarchical approach. Interestingly, a key result that we prove on the equivalence between a k-size NSP of a coalitional game and minimum k-cut of an appropriately constructed graph comes in handy for large scale problems. In this paper, we use feature selection problem (in a classification setting) as a running example to illustrate our approach. We conduct experiments to illustrate the efficacy of our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we approach the classical problem of clustering using solution concepts from cooperative game theory such as Nucleolus and Shapley value. We formulate the problem of clustering as a characteristic form game and develop a novel algorithm DRAC (Density-Restricted Agglomerative Clustering) for clustering. With extensive experimentation on standard data sets, we compare the performance of DRAC with that of well known algorithms. We show an interesting result that four prominent solution concepts, Nucleolus, Shapley value, Gately point and \tau-value coincide for the defined characteristic form game. This vindicates the choice of the characteristic function of the clustering game and also provides strong intuitive foundation for our approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the MIMO X channel (XC), a system consisting of two transmit-receive pairs, where each transmitter communicates with both the receivers. Both the transmitters and receivers are equipped with multiple antennas. First, we derive an upper bound on the sum-rate capacity of the MIMO XC under individual power constraint at each transmitter. The sum-rate capacity of the two-user multiple access channel (MAC) that results when receiver cooperation is assumed forms an upper bound on the sum-rate capacity of the MIMO XC. We tighten this bound by considering noise correlation between the receivers and deriving the worst noise covariance matrix. It is shown that the worst noise covariance matrix is a saddle-point of a zero-sum, two-player convex-concave game, which is solved through a primal-dual interior point method that solves the maximization and the minimization parts of the problem simultaneously. Next, we propose an achievable scheme which employs dirty paper coding at the transmitters and successive decoding at the receivers. We show that the derived upper bound is close to the achievable region of the proposed scheme at low to medium SNRs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by the observation that communities in real world social networks form due to actions of rational individuals in networks, we propose a novel game theory inspired algorithm to determine communities in networks. The algorithm is decentralized and only uses local information at each node. We show the efficacy of the proposed algorithm through extensive experimentation on several real world social network data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analytically study the role played by the network topology in sustaining cooperation in a society of myopic agents in an evolutionary setting. In our model, each agent plays the Prisoner's Dilemma (PD) game with its neighbors, as specified by a network. Cooperation is the incumbent strategy, whereas defectors are the mutants. Starting with a population of cooperators, some agents are switched to defection. The agents then play the PD game with their neighbors and compute their fitness. After this, an evolutionary rule, or imitation dynamic is used to update the agent strategy. A defector switches back to cooperation if it has a cooperator neighbor with higher fitness. The network is said to sustain cooperation if almost all defectors switch to cooperation. Earlier work on the sustenance of cooperation has largely consisted of simulation studies, and we seek to complement this body of work by providing analytical insight for the same. We find that in order to sustain cooperation, a network should satisfy some properties such as small average diameter, densification, and irregularity. Real-world networks have been empirically shown to exhibit these properties, and are thus candidates for the sustenance of cooperation. We also analyze some specific graphs to determine whether or not they sustain cooperation. In particular, we find that scale-free graphs belonging to a certain family sustain cooperation, whereas Erdos-Renyi random graphs do not. To the best of our knowledge, ours is the first analytical attempt to determine which networks sustain cooperation in a population of myopic agents in an evolutionary setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of ``fair'' scheduling the resources to one of the many mobile stations by a centrally controlled base station (BS). The BS is the only entity taking decisions in this framework based on truthful information from the mobiles on their radio channel. We study the well-known family of parametric alpha-fair scheduling problems from a game-theoretic perspective in which some of the mobiles may be noncooperative. We first show that if the BS is unaware of the noncooperative behavior from the mobiles, the noncooperative mobiles become successful in snatching the resources from the other cooperative mobiles, resulting in unfair allocations. If the BS is aware of the noncooperative mobiles, a new game arises with BS as an additional player. It can then do better by neglecting the signals from the noncooperative mobiles. The BS, however, becomes successful in eliciting the truthful signals from the mobiles only when it uses additional information (signal statistics). This new policy along with the truthful signals from mobiles forms a Nash equilibrium (NE) that we call a Truth Revealing Equilibrium. Finally, we propose new iterative algorithms to implement fair scheduling policies that robustify the otherwise nonrobust (in presence of noncooperation) alpha-fair scheduling algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Representatives of several Internet service providers (ISPs) have expressed their wish to see a substantial change in the pricing policies of the Internet. In particular, they would like to see content providers (CPs) pay for use of the network, given the large amount of resources they use. This would be in clear violation of the ``network neutrality'' principle that had characterized the development of the wireline Internet. Our first goal in this article is to propose and study possible ways of implementing such payments and of regulating their amount. We introduce a model that includes the users' behavior, the utilities of the ISP and of the CPs, and, the monetary flow that involves the content users, the ISP and CP, and, in pUrticular, the CP's revenues from advertisements. We consider various game models and study the resulting equilibria; they are all combinations of a noncooperative game (in which the ISPs and CPs determine how much they will charge the users) with a ``cooperative'' one on how the CP and the ISP share the payments. We include in our model a possible asymmetric weighting parameter (that varies between zero to one). We also study equilibria that arise when one of the CPs colludes with the TSP. We also study two dynamic game models as well as the convergence of prices to the equilibrium values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a new approach to clustering. Our idea is to map cluster formation to coalition formation in cooperative games, and to use the Shapley value of the patterns to identify clusters and cluster representatives. We show that the underlying game is convex and this leads to an efficient biobjective clustering algorithm that we call BiGC. The algorithm yields high-quality clustering with respect to average point-to-center distance (potential) as well as average intracluster point-to-point distance (scatter). We demonstrate the superiority of BiGC over state-of-the-art clustering algorithms (including the center based and the multiobjective techniques) through a detailed experimentation using standard cluster validity criteria on several benchmark data sets. We also show that BiGC satisfies key clustering properties such as order independence, scale invariance, and richness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a system with multiple Femtocells operating in a Macrocell. The transmissions in one Femtocell interfere with its neighboring Femtocells as well as with the Macrocell Base Station. We model Femtocells as selfish nodes and the Macrocell Base Station protects itself by pricing subchannels for each usage. We use Stackelberg game model to study this scenario and obtain equilibrium policies that satisfy certain quality of service.