227 resultados para Cultura studies
Resumo:
Three aspects of crystal engineering in molecular crystals are presented to emphasize the role of intermolecular interactions and factors influencing crystal packing. Hydrogen bonded tartrate-amine complexes have been analyzed with the propensity for formation of multidirectional hydrogen bonding as a key design element in the generation of materials for second harmonic generation (SHG). The invariance of the framework in DBT and its possible implications on SHG is outlined. The role of Fluorine in orienting molecules of coumarins, styrylcoumarins and butadienes for photodimerization is described with particular emphasis on its steering capability. Usage of coumarin as an design element for the generation of polymorphs of substituted styrylcoumarins is examined with specific examples.
Resumo:
In this paper, we present the preparation and characterization of nanoparticles and nanowires of Pr0.5Sr0.5MnO3 (PSMO). The main results of this investigation are as follows: (a) a comparison with the properties of the bulk material shows that the ferromagnetic (FM) transition at 270 K remains unaffected but the anti-ferromagnetic (AFM) transition at TN = 150 K disappears in the nanoparticles, (b) the size induced ground state magnetic phase (below 150 K) is predominantly FM, coexisting with a residual AFM phase, and (c) the temperature dependence of magnetic anisotropy shows complex behaviour, being higher in the nanoparticles at high temperatures and lower at moderately lower temperatures in comparison with the bulk. The results obtained from the extensive magnetization, magnetotransport and electron magnetic resonance studies made on various samples are presented and discussed in detail.
Resumo:
Bread staling is a very complex phenomenon that is not yet completely understood. The present work explains how the electrical impedance spectroscopy technique can be utilized to investigate the effect of staling on the physicochemical properties of wheat bread during storage. An instrument based on electrical impedance spectroscopy technique is developed to study the electrical properties of wheat bread both at its crumb and crust with the help of designed multi-channel ring electrodes. Electrical impedance behavior, mainly capacitance and resistance, of wheat bread at crust and crumb during storage (up to 120 h) is investigated. The variation in capacitance showed the glass transition phenomenon at room temperature in bread crust after 96 h of storage with 18% of moisture in it. The resistance changes at bread crumb showed the starch recrystallization during staling.
Resumo:
Hydroxo-bridged homo- and hetero-trinuclear cobalt(III) complexes of the type [MII(H2O)2{(OH)2CoIII(N4)}2]X2·nH2O [MII= a divalent metal ion such as CoII, NiII or ZnII; N4=(en)2(en = ethane-1,2-diamine) or (NH3)4; X = SO4 or (ClO4)2; n= 3 or 5] have been prepared and spectroscopically characterized. The structure of [Cu{(OH)2Co(en)2}2][SO4]2·2H2O 1 has been determined. The geometry around copper atom is a pseudo-square-based pyramid, with the basal sites occupied by four bridging hydroxide oxygens and the apical site is occupied by a weakly co-ordinated sulfate anion [Cu–O 2.516(4)Å]. The hydroxo groups bridge pairs of cobalt(III) ions which are in near-octahedral environments. The ethylenediamine chelate rings have the twist conformation. In the crystal structure of [Cu{(OH)2Co(en)2}2][ClO4]4·2H2O 2 the perchlorate ion is not co-ordinated and the en ligands have envelope conformations. The sulfate ion in [Cu{(OH)2Co(NH3)4}2][SO4]2·4H2O 3 is not co-ordinated to the central copper ion. Electronic, infrared and variable-temperature EPR spectral data are discussed.
Resumo:
Ceramic samples of SrBi2Ta2O9 (SBT) were prepared by the solid state reaction method with a view to study their electrical properties. Reasons as to why SBT shows better fatigue endurance than conventional perovskites like Pb(Zr, Ti)O-3 are looked into. Complex impedance spectroscopy (CIS) was used as a tool to do so. CIS data was acquired over the temperature range from room temperature to 500 degrees C over a wide range of frequencies. Electrical conductivity data indicates that the conductivity in SBT is essentially due to oxygen vacancies and the activation energy for conduction in the high temperature region was found to be 0.95 eV. CIS was used to separate out the bulk and the interfacial contributions to complex impedance.
Resumo:
Semieonducting GaxTe~oo-x (17 -< x _< 25) glasses have been prepared by melt quenching method and thermal crystallization studies carried out using differential scanning calorimetry. On heating, virgin GaxTel0o-x glasses exhibit one glass transition and two crystallization reactions.The first crystallization reaction corresponds to the precipitation of hexagonal Te and the second one to the crystallization of the matrix into zinc blende Ga2Te3 phase. If GaxTeloo-x glasses are quenched to ambient temperature from Tcrl and reheated, they exhibit the phenomenon of double glass transition.
Resumo:
TiO2 films are extensively used in various applications including optical multi-layers, sensors, photo catalysis, environmental purification, and solar cells etc. These are prepared by both vacuum and non-vacuum methods. In this paper, we present the results on TiO2 thin films prepared by a sol-gel spin coating process in non-aqueous solvent. Titanium isopropoxide is used as TiO2 precursor. The films were annealed at different temperatures up to 3000 C for 5 hours in air. The influence of the various deposition parameters like spinning speed, spinning time and annealing temperature on the thickness of the TiO2 films has been studied. The variation of film thickness with time in ambient atmosphere was also studied. The optical, structural and morphological characteristics were investigated by optical transmittance-reflectance measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The refractive index and extinction coefficient of the films were determined by envelope technique and spectroscopic ellipsometry. TiO2 films exhibited high transparency (92%) in the visible region with a refractive index of 2.04 at 650 nm. The extinction coefficient was found to be negligibly small. The X-ray diffraction analysis showed that the TiO2 film deposited on glass substrate changes from amorphous to crystalline (anatase) phase with annealing temperature above 2500 C. SEM results show that the deposited films are uniform and crack free.
Resumo:
This paper presents experimental and computational results of oxy-fuel burner operating on classical flame and lameless mode for heat release rate of 26 kW/m3. The uniqueness of the burner arises from a slight asymmetric injection of oxygen at near sonic velocities. Measurements of emperature, species, total heat flux, radiative heat flux and NOx emission were carried out inside the furnace and the flow field was computationally analyzed. The flame studies were carried out for coaxial flow of oxygen and fuel jets with similar inlet velocities. This configuration results in slow mixing between fuel and oxygen and the flame is developed at distance away from the burner and the flame is bright/white in colour. In the flameless mode a slight asymmetric injection of the high velocity oxygen jet leads to a large asymmetric recirculation pattern with the recirculation ratio of 25 and the resulting flame is weak bluish in colour with little soot and acetylene formation. The classical flame in comparison is characterised by soot and acetylene formation, higher NOx and noise generation. The distribution of temperature and heat flux in the furnace is more uniform with flameless mode than with flame mode.
Resumo:
Flower-like nickel nanocone structures are synthesized by a simple chemical reduction method using hydrazine hydrate as the reducing agent. The structure, morphology and magnetic properties of as synthesized products are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and SQUID magnetometer. The morphology evolution is studied by varying the reaction temperature and concentration of nickel chloride keeping other conditions unchanged.
Resumo:
Flower-like nickel nanocone structures are synthesized by a simple chemical reduction method using hydrazine hydrate as the reducing agent. The structure, morphology and magnetic properties of as synthesized products are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and SQUID magnetometer. The morphology evolution is studied by varying the reaction temperature and concentration of nickel chloride keeping other conditions unchanged.
Resumo:
Among the various Mn compounds, both MnO2 and Mn(OH)2 are electrochemically active in supercapacitor studies. MnO2 and Mn(OH)2 are simultaneously deposited, through a one-pot method, on the anode and cathode, respectively, of a galvanostatic electrolysis cell consisting of aqueous Mn(NO3)2 electrolyte. MnO2 and Mn(OH)2 coated stainless steel (SS) electrodes are found to exhibit a capacitive behavior with a high specific capacitance. MnO2/SS and Mn(OH)2/SS electrodes are used as the negative and positive electrodes, respectively, in assembling nonsymmetrical capacitors and testing. The results indicate that both Mn-based electrodes prepared simultaneously in a single electrolysis possess interesting electrochemical properties for supercapacitor application.
Resumo:
We describe an X-band ESR cavity for angular variation studies on single crystals at room temperature. The cavity was found to have a high Q over wide rotation angles. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
High-pressure magnetic susceptibility measurements have been carried out on Fe(dipy)2(NCS)2 and Fe(phen)2(NCS)2 in the pressure range 1–10 kbar and tempeature range 80–300 K in order to investigate the factors responsible for the spin-state transitions. The transitions change from first order to second or higher order upon application of pressure. The temperature variation of the susceptibility at different pressures has been analysed quantitatively within the framework of available models. It is shown that the relative magnitudes of the ΔG0 of high-spin and low-spin conversion and the ferromagnetic interaction between high-spin complexes determines the nature of the transition.
Resumo:
From X-ray diffraction studies it is generally believed that B-DNA has the structural parameters n = 10 and h = 3.4 Å. However, for the first time we report that polymorphism in the B-form can be observed in DNA fibres. This was achieved by the precise control of salt and humidity in fibres and by the application of the precession method of X-ray diffraction to DNA fibres. The significant result obtained is that n = 10 is not observed for crystalline fibre patterns. In fact, n = 10 and h = 3.4 Å are not found to occur simultaneously. Instead, a range of values, n = 9.6–10.0 and h = 3.35 Å–3.41 Å is observed.
Resumo:
Internal motions in a A2BX4 compound (tetramethylammonium tetrabromo cadmate) have been investigated using proton spin—lattice relaxation time (T1) and second moment (M2) measurements in the temperature range 77 to 400 K. T1 measurements at three Larmor frequencies (10, 20 and 30 MHz) show isotropic tumbling of the tetramethylammonium group, random reorientation of methyl groups and spin—rotation interaction, and the corresponding parameters have been computed. The cw spectrum is narrow throughout the temperature range and shows side bands at the lowest temperature. This observation, along with the free-induction-decay behavior at these temperatures, is interpreted as the onset of a coherent motion, e.g. methyl group quantum tunnelling.