119 resultados para Cube attack


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The enzyme nicotinamide amidase (nicotinamide amidohydrolase) was purified 57-fold from Aspergillus niger. The purified preparation was specific towards its substrate nicotinamide and did not deamidate NADP, NAD, NMN, N′-methyl nicotinamide, asparagine, glutamine, benzamide, α-naphthaleneamide and indoleacetamide. The asparagine, glutamine, benzamide, α-naphthaleneamide and indoleacetamide.vThe optimum pH was found to be 7.5. Temperature optimum was 40°. It had a Km value of 6.504 · 10−4 M towards nicotinamide. The enzyme exhibited Mg2+ ion requirement for its optimum activity. NAD-glycohydrolase (EC 3.2.2.5) was purified 109-fold from the mold. A. niger. The enzyme preparation was active only towards NAD and NADP and did not attack NMN, N′-methylnicotinamide and NADH. The Km value for NAD was found to be 7.693 · 10−6 M. The enzyme did not require any metal ion for its activity. It is suggested that A. niger will serve a better source for a large scale preparation of NAD-glycohydrolase than the Neurospora mold. The biological role of both NAD-glycohydrolase and nicotinamide amidase in the regulation of cellular NAD level has been discussed. It is, further, observed that NAD did not exert its feedback control on nicotinamide amidase at least in A. niger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Direct contact mechanism in bioleaching implies prior mineral adhesion of Acidithiobacillus ferrooxidans and subsequent enzymatic attack.Prior bacterial adaptation to sulfide mineral substrates influences bacterial ferrous ion oxidation rates. It is highly beneficial to understand major biooxidation mechanisms with reference to solution- and mineral-grown cells in order to optimize bioleaching reactions. For A. ferrooxidans grown in the presence of solid substrates such as sulfur, pyrite and chalcopyrite, bacterial adhesion is required for its enzymatic machinery to come into close contact for mineral dissolution.But when grown in solution substrate such as ferrous ions and thiosulfate, such an adhesion machinery is not required for substrate utilization. Proteinaceous compounds were observed on the surface of sulfur-grown cells. Such an induction of relatively hydrophobic proteins and down regulation of exposed polysaccharides leads to changes in cell surface chemistry. Sulfur-grown and pyrite- and chalcopyrite-grown bacterial cells were found to be more efficient in the bioleaching of chalcopyrite than those grown in the presence of ferrous ions and thiosulfate. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When sodium borohydride is added to aqueous solutions of 2,4-dinitrophenylamino acids and related derivatives, an intense red color is formed. Measurement of the red color, with a 420 filter, permits the determination of such compounds in concentrations of 0.01 to 0.06 μmole per ml. with a precision to 2%. The reaction is highly specific-while 2,4-dinitroaniline will react to the test, o-, m-, and p-nitroanilines, 2,4-dinitrophenyl aryl or alkyl ethers, and 2,4-dinitrophenyl-imidazole and pyrrolidine derivatives will not. Heretofore aromatic nitro groups have been considered resistant to attack by sodium borohydride. The method, as developed, is applicable to the evaluation of the degree of substitution of protein amino groups by fluorodinitrobenzene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extracellular endopolygalacturonate lyase of Cytophaga johnsonii was purified from the culture filtrate. It appeared to be homogeneous as judged by polyacrylamide gel electrophoresis at pH 8.6 as well as pH 4.3. The purified enzyme had a pH optimum around 9.0 and required Ca++ ions for its maximum activity. The apparent Kmfor polygalacturonic acid was found to be 0.22%. Both paper and column chromatography indicated formation and accumulation of an unsaturated monomer along with unsaturated di-, tri-, tetra- and pentamers from polygalacturonic acid by the enzyme action, indicating that the enzyme cleaved the substrate randomly in a non-hydrolytic manner. The glycosidic linkage next to the non-reducing end of polygalacturonic acid was not resistant to attack by this enzyme unlike in other known polygalacturonate lyases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spontaneous ejection of chloride from a three-coordinate boron Lewis acid can be effected by employing very electron rich metal substituents and leads to the formation of a sterically unprotected terminal (dimethylamino)borylene complex that has a short metal-boron bond and remarkable resistance to attack by nucleophilic and protic reagents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aerodynamic forces and fore-body convective surface heat transfer rates over a 60 degrees apex-angle blunt cone have been simultaneously measured at a nominal Mach number of 5.75 in the hypersonic shock tunnel HST2. An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the investigations. The measured value of the drag coefficient varies by about +/-6% from the theoretically estimated value based on the modified Newtonian theory, while the axi-symmetric Navier-Stokes computations overpredict the drag coefficient by about 9%. The normalized values of measured heat transfer rates at 0 degrees angle of attack are about 11% higher than the theoretically estimated values. The aerodynamic and the heat transfer data presented here are very valuable for the validation of CFD codes used for the numerical computation of How fields around hypersonic vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 400 degreesC by low-pressure metalorganic chemical vapour deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si (100) in the temperature range 400-550 degreesC. Under similar conditions of growth. highly oriented films of Co3O4 are formed on SrTiO3 (100) and LaAlO3 (100). The activation energy for the growth of polycrystalline films on glass is significantly higher than that for epitaxial growth on SrTiO3 (100). The film on LaAlO3 (100) grown at 450 degreesC shows a rocking curve FWHM of 1.61 degrees, which reduces to 1.32 degrees when it is annealed in oxygen at 725 degreesC. The film on SrTiO3 (100) has a FWHM of 0.33 degrees (as deposited) and 0.29 (after annealing at 725 degreesC). The phi -scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3 (100) is comparable to the best of the perovskite-based oxide thin films grown at significantly higher temperatures. A plausible mechanism is proposed for the observed low temperature epitaxy. (C) 2001 Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flapping equation for a rotating rigid helicopter blade is typically derived by considering (1)small flap angle, (2) small induced angle of attack and (3) linear aerodynamics. However, the use of nonlinear aerodynamics such as dynamic stall can make the assumptions of small angles suspect as shown in this paper. A general equation describing helicopter blade flap dynamics for large flap angle and large induced inflow angle of attack is derived. A semi-empirical dynamic stall aerodynamics model (ONERA model) is used. Numerical simulations are performed by solving the nonlinear flapping ordinary differential equation for steady state conditions and the validity of the small angle approximations are examined. It is shown that the small flapping assumption, and to a lesser extent, the small induced angle ofattack assumption, can lead to inaccurate predictions of the blade flap response in certain flight conditions for some rotors when nonlinear aerodynamics is considered. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advent of large and fast digital computers and development of numerical techniques suited to these have made it possible to review the analysis of important fundamental and practical problems and phenomena of engineering which have remained intractable for a long time. The understanding of the load transfer between pin and plate is one such. Inspite of continuous attack on these problems for over half a century, classical solutions have remained limited in their approach and value to the understanding of the phenomena and the generation of design data. On the other hand, the finite element methods that have grown simultaneously with the recent development of computers have been helpful in analysing specific problems and answering specific questions, but are yet to be harnessed to assist in obtaining with economy a clearer understanding of the phenomena of partial separation and contact, friction and slip, and fretting and fatigue in pin joints. Against this background, it is useful to explore the application of the classical simple differential equation methods with the aid of computer power to open up this very important area. In this paper we describe some of the recent and current work at the Indian Institute of Science in this last direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A k-dimensional box is the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the Cartesian product R-1 X R-2 X ... X R-k where each R-i is a closed interval oil the real line of the form a(i), a(i) + 1]. The cubicity of G, denoted as cub(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-cubes. The threshold dimension of a graph G(V, E) is the smallest integer k such that E can be covered by k threshold spanning subgraphs of G. In this paper we will show that there exists no polynomial-time algorithm for approximating the threshold dimension of a graph on n vertices with a factor of O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. From this result we will show that there exists no polynomial-time algorithm for approximating the boxicity and the cubicity of a graph on n vertices with factor O(n(0.5-epsilon)) for any epsilon > 0 unless NP = ZPP. In fact all these hardness results hold even for a highly structured class of graphs, namely the split graphs. We will also show that it is NP-complete to determine whether a given split graph has boxicity at most 3. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several methods are available for predicting flexural strength of steel fiber concrete composites. In these methods, direct tensile strength, split cylinder strength, and cube strength are the basic engineering parameters that must be determined to predict the flexural strength of such composites. Various simplified forms of stress distribution are used in each method to formulate the prediction equations for flexural strength. In this paper, existing methods are reviewed and compared, and a modified empirical approach is developed to predict the flexural strength of fiber concrete composites. The direct tensile strength of the composite is used as the basic parameter in this approach. Stress distribution is established from the findings of flexural tests conducted as part of this investigation on fiber concrete prisms. A comparative study of the test values of an earlier investigation on fiber concrete slabs and the computed values from existing methods, including the one proposed, is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cavitation has been observed in the trailing vortex system of an elliptic planform hydrofoil. A complex dependence on Reynolds number and gas content is noted at inception. Some of the observations can be related to tension effects associated with the lack of sufficiently large-sized nuclei. Inception measurements are compared with estimates of pressure in the vortex obtained from LDV measurements of velocity within the vortex. It is concluded that a complete correlation is not possible without knowledge of the fluctuating levels of pressure in tip-vortex flows. When cavitation is fully developed, the observed tip-vortex trajectory shows a surprising lack of dependence on any of the physical parameters varied, such as angle of attack, Reynolds number, cavitation number, and dissolved gas content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let G(V, E) be a simple, undirected graph where V is the set of vertices and E is the set of edges. A b-dimensional cube is a Cartesian product l(1) x l(2) x ... x l(b), where each l(i) is a closed interval of unit length on the real line. The cub/city of G, denoted by cub(G), is the minimum positive integer b such that the vertices in G can be mapped to axis parallel b-dimensional cubes in such a way that two vertices are adjacent in G if and only if their assigned cubes intersect. An interval graph is a graph that can be represented as the intersection of intervals on the real line-i.e. the vertices of an interval graph can be mapped to intervals on the real line such that two vertices are adjacent if and only if their corresponding intervals overlap. Suppose S(m) denotes a star graph on m+1 nodes. We define claw number psi(G) of the graph to be the largest positive integer m such that S(m) is an induced subgraph of G. It can be easily shown that the cubicity of any graph is at least log(2) psi(G)]. In this article, we show that for an interval graph G log(2) psi(G)-]<= cub(G)<=log(2) psi(G)]+2. It is not clear whether the upper bound of log(2) psi(G)]+2 is tight: till now we are unable to find any interval graph with cub(G)> (log(2)psi(G)]. We also show that for an interval graph G, cub(G) <= log(2) alpha], where alpha is the independence number of G. Therefore, in the special case of psi(G)=alpha, cub(G) is exactly log(2) alpha(2)]. The concept of cubicity can be generalized by considering boxes instead of cubes. A b-dimensional box is a Cartesian product l(1) x l(2) x ... x l(b), where each I is a closed interval on the real line. The boxicity of a graph, denoted box(G), is the minimum k such that G is the intersection graph of k-dimensional boxes. It is clear that box(G)<= cub(G). From the above result, it follows that for any graph G, cub(G) <= box(G)log(2) alpha]. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 65: 323-333, 2010