48 resultados para Compositional Rule of Inference
Resumo:
The healing times for the growth of thin films on patterned substrates are studied using simulations of two discrete models of surface growth: the Family model and the Das Sarma-Tamborenea (DT) model. The healing time, defined as the time at which the characteristics of the growing interface are ``healed'' to those obtained in growth on a flat substrate, is determined via the study of the nearest-neighbor height difference correlation function. Two different initial patterns are considered in this work: a relatively smooth tent-shaped triangular substrate and an atomically rough substrate with singlesite pillars or grooves. We find that the healing time of the Family and DT models on aL x L triangular substrate is proportional to L-z, where z is the dynamical exponent of the models. For the Family model, we also analyze theoretically, using a continuum description based on the linear Edwards-Wilkinson equation, the time evolution of the nearest-neighbor height difference correlation function in this system. The correlation functions obtained from continuum theory and simulation are found to be consistent with each other for the relatively smooth triangular substrate. For substrates with periodic and random distributions of pillars or grooves of varying size, the healing time is found to increase linearly with the height (depth) of pillars (grooves). We show explicitly that the simulation data for the Family model grown on a substrate with pillars or grooves do not agree with results of a calculation based on the continuum Edwards-Wilkinson equation. This result implies that a continuum description does not work when the initial pattern is atomically rough. The observed dependence of the healing time on the substrate size and the initial height (depth) of pillars (grooves) can be understood from the details of the diffusion rule of the atomistic model. The healing time of both models for pillars is larger than that for grooves with depth equal to the height of the pillars. The calculated healing time for both Family and DT models is found to depend on how the pillars and grooves are distributed over the substrate. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This article highlights different synthetic strategies for the preparation of colloidal heterostructured nanocrystals, where at least one component of the constituent nanostructure is a semiconductor. Growth of shell material on a core nanocrystal acting as a seed for heterogeneous nucleation of the shell has been discussed. This seeded-growth technique, being one of the most heavily explored mechanisms, has already been discussed in many other excellent review articles. However, here our discussion has been focused differently based on composition (semiconductor@semiconductor, magnet@semiconductor, metal@semiconductor and vice versa), shape anisotropy of the shell growth, and synthetic methodology such as one-step vs. multi-step. The relatively less explored strategy of preparing heterostructures via colloidal sintering of different nanostructures, known as nanocrystal-fusion, has been reviewed here. The ion-exchange strategy, which has recently attracted huge research interest, where compositional tuning of nanocrystals can be achieved by exchanging either the cation or anion of a nanocrystal, has also been discussed. Specifically, controlled partial ion exchange has been critically reviewed as a viable synthetic strategy for the fabrication of heterostructures. Notably, we have also included the very recent methodology of utilizing inorganic ligands for the fabrication of heterostructured colloidal nanocrystals. This unique strategy of inorganic ligands has appeared as a new frontier for the synthesis of heterostructures and is reviewed in detail here for the first time. In all these cases, recent developments have been discussed with greater detail to add upon the existing reviews on this broad topic of semiconductor-based colloidal heterostructured nanocrystals.
Resumo:
The photo-induced effects of Ge12Sb25S63 films illuminated with 532 nm laser light are investigated from transmission spectra measured by FTIR spectroscopy. The material exhibits photo-bleaching (PB) when exposed to band gap light for a prolonged time in a vacuum. The PB is ascribed to structural changes inside the film as well as surface photooxidation. The amorphous nature of thin films was detected by x-ray diffraction. The chemical composition of the deposited thin films was examined by energy dispersive x-ray analysis (EDAX). The refractive indices of the films were obtained from the transmission spectra based on an inverse synthesis method and the optical band gaps were derived from optical absorption spectra using the Tauc plot. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. It was found that the mechanism of the optical absorption follows the rule of the allowed non-direct transition. Raman and x-ray photoelectron spectra (XPS) were measured and decomposed into several peaks that correspond to the different structural units which support the optical changes.
Resumo:
The present work reports the impact of sintering conditions on the phase stability in hydroxyapatite (HA) magnetite (Fe3O4) bulk composites, which were densified using either pressureless sintering in air or by rapid densification via hot pressing in inert atmosphere. In particular, the phase abundances, structural and magnetic properties of the (1-x)HA-xFe(3)O(4) (x = 5, 10, 20, and 40 wt %) composites were quantified by corroborating results obtained from Rietveld refinement of the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. Post heat treatment phase analysis revealed a major retention of Fe3O4 in argon atmosphere, while it was partially/completely oxidized to hematite (alpha-Fe2O3) in air. Mossbauer results suggest the high-temperature diffusion of Fe3+ into hydroxyapatite lattice, leading to the formation of Fe-doped HA. A preferential occupancy of Fe3+ at the Ca(1) and Ca(2) sites under hot-pressing and conventional sintering conditions, respectively, was observed. The lattice expansion in HA from Rietveld analysis correlated well with the amounts of Fe-doped HA determined from the Mossbauer spectra. Furthermore, hydroxyapatite in the monoliths and composites was delineated to exist in the monoclinic (P2(1)/b) structure as against the widely reported hexagonal (P6(3)/m) crystal lattice. The compositional similarity of iron doping in hydroxyapatite to that of tooth enamel and bone presents HA-Fe3O4 composites as potential orthopedic and dental implant materials.
Resumo:
This paper explores phase formation and phase stability in free nanoparticles of binary alloys. A procedure for estimating the size and composition dependent free energies incorporating the contributions from the interfaces has been presented. Both single phase solid solution and two phase morphology containing interphase interfaces have been considered. A free energy scenario has been evaluated for two binary alloy systems Ag-Ni and Ag-Cu to predict the microstructure of the alloy nanoparticles at different size ranges as a function of composition. Both Ag-Cu and Ag-Ni systems exhibit wide bulk immiscibility. Ag-Ni nanoparticles were synthesized using the wet chemical synthesis technique whereas Ag-Cu nanoparticles were synthesized using laser ablation of a Ag-Cu target immersed in distilled water. Microstructural and compositional characterization of Ag-Ni and Ag-Cu nanoparticles on a single nanoparticle level was conducted using transmission electron microscopy. Nanoparticle microstructures observed from the microscopic investigation have been correlated with thermodynamic calculation results. It is shown that the observed two phase microstructure consisting of Ag-Ni solid solution in partial decomposed state coexisting with pure Ag phases in the case of Ag-Ni nanoparticles can be only be rationalized by invoking the tendency for phase separation of an initial solid solution with increase in nanoparticle size. Smaller sized Ag-Ni nanoparticles prefer a single phase solid solution microstructure. Due to an increase in particle size during the synthesis process the initial solid solution decomposes into an ultrafine scale phase separated microstructure. We have shown that it is necessary to invoke critical point phenomenon and wetting transition in systems showing a critical point that leads to phase separated Ag-Ni nanoparticles providing a catalytic substrate for the nucleation of equilibrium Ag over it. In the case of the Ag-Cu system, we report the experimental observation of a core shell structure at small sizes. This can be rationalized in terms of a metastable solid solution. It is argued that the nucleation barrier can prevent the formation of biphasic morphology with an internal interface. In such a situation, demixing of the solid solution can bring the system to a lower energy configuration. This has lead to the observed core-shell morphology in the Ag-Cu system during room temperature synthesis.
Resumo:
The addition of small amount of boron to Ti and it alloys refines the as-cast microstructure and enhances the mechanical properties. In this paper, we employ nanoindentation on each of the constituent phases in the microstructure and `rule-of-mixture' type analysis to examine their relative contributions to the strength enhancement in a Ti-6Al-4V alloy modified with 0.3 wt% B. Our results indicate to two main contributors to the relatively higher flow strength of B-modified alloy vis-a-vis the base alloy: (a) strengthening of alpha phase due to the reduction in the effective slip length that occurs as a result of the microstructural refinement that occurs upon B addition, and (b) composite strengthening caused by the TiB whiskers present in the alloy. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This work provides a methodology for synthesizing isolated multi-component, high entropy alloy nanoparticles. Wet chemical synthesis technique was used to synthesis NiFeCrCuCo nanoparticles. As synthesized nanoparticles were spherical with an average size of 26.7 +/- 3.3 nm. Average composition of the as-synthesized nanoparticle dispersion was 26 +/- 2 at% Cr, 14 +/- 2 at% Fe, 10 +/- 0.6 at% Co, 25 +/- 0.1 at% Ni and 25 +/- 1.1 at% Cu. Compositional analysis of the nanoparticles conducted using the compositional line profile analysis and compositional mapping on a single nanoparticle level revealed a fairly uniform distribution of all the five component elements within the nanoparticle volume. Electron diffraction analysis clearly revealed that the structure of as-synthesized nanoparticles was face centered cubic. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A systematic investigation of the effects of antimony dopant on the electronic transport properties of amorphous (GeSe3.5)100−xSbx under high pressure (up to 120 kbar) has been carried out down to liquid-nitrogen temperature for the first time. Differential thermal analysis and x-ray diffraction methods were used for the characterization of freshly prepared and pressure-quenched materials which indicated the presence of structural phase transition in both GeSe3.5 and (GeSe3.5)100−xSbx around 105 kbar pressure. Electrical transport data revealed the strong compositional dependence of the electronic conduction process. A distinct kink in the conductivity temperature plot at pressures>15 kbar was observed in the Sb-doped compositions indicating the presence of different conduction processes. An attempt has been made to interpret the pressure-induced effect in the transport properties of these glasses considering the possible presence of both thermally activated conduction in the extended states and hopping process in the localized tail states. However, the interpretation of the transport data is not straightforward and the pressure dependence of the thermoelectric power will be needed to complete the picture. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
Tellurite-based glasses in the TeO2-K3Li2Nb5O15, TeO2-Ba5Li2Ti2Nb8O30, and V2Te2O9 were fabricated by the conventional melt-quenching technique. Amorphous and glassy characteristics of the as-quenched samples were established via the X-ray powder diffraction technique and differential thermal analysis, respectively. The as-quenched samples were irradiated by an excimer laser (248 nm). The effect of laser power, duration of irradiation, and the frequency of the laser pulses on the surface features of the above glasses were studied. The optical microscopic studies carried out on the above systems revealed the presence of quasi-periodic and periodic structures on their surfaces. The local compositional variations of these structures were confirmed by back-scattered electron imaging using scanning electron microscope accompanied by energy-dispersive X-ray analysis. These results were convincing enough to state that the glasses in the present investigations had undergone spinodal decomposition on laser irradiation. The incidence of the interconnected texture of two different phases was observed owing to the quenching effect produced by the heating and cooling cycle of the successive laser pulses. Ring- and line-shaped patterns were also observed, respectively, when the pulse frequency of the laser and the duration of irradiation were increased.
Resumo:
The photoluminescence (PL) of a series of (GeS2)(80)(Ga2S3)(20) glasses doped with different amounts of Er (0.17, 0.35, 0.52, 1.05 and 1.39 at.%) at 77 and 4.2 K has been studied. The influence of the temperature on the emission cross-section of the PL bands at -> 1540, 980 and 820 nm under host excitation has been defined. A quenching effect of the host photoluminescence has been established from the compositional dependence of the PL intensity. It has been found that the present Er3+-doped Ge-S-Ga glasses posses PL lifetime values about 3.25 ms. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The two dimensional plane can be filled with rhombuses, so as to generate non-periodic tilings with 4, 6, 8, 10 and 12-fold symmetries. Some representative tilings constructed using the rule of inflation are shown. The numerically computed diffraction patterns for the corresponding tilings are also shown to facilitate a comparison with possible X-ray or electron diffraction pictures.
Resumo:
Alternating Differential Scanning Calorimetric (ADSC) and electrical switching studies have been undertaken on Ge20Se80-xBix glasses (1 <= x <= 13), to understand the effect of topological thresholds on thermal properties and electrical switching behavior. It is found that the compositional dependence of glass transition temperature (Tg), crystallization temperature (T-c1) and thermal stability (AT) of Ge20Se80-xBix glasses show anomalies at a composition x= 5, the rigidity percolation/stiffness threshold of the system. Further, unusual variations are also observed in different thermal properties, such as T-g, T-c1, Delta T, Delta C-p and Delta H-NR, at the composition x= 10, which indicates the occurrence of chemical threshold in these glasses at this composition. Electrical switching studies indicate that Ge20Se8o_RBig glasses with 5 11 exhibit threshold switching behavior and those with x = 12 and 13 show memory switching. A sharp decrease has been noticed in the switching voltages with bismuth concentration, which is due to the more metallic nature of bismuth and the presence of Bi+ ions. Further, a saturation is seen in the decrease in V-T around x = 6, which is related to bismuth phase percolation at higher concentrations of Bi. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Chalcogenide glasses with compositions Ge7.5AsyTe92.5-y (y = 20, 40, 45, 47.5, 50, 52.5, 55) and Ge10AsyTe90-y (y = 15, 20, 22.5, 35, 40, 45, 50) have been prepared by the melt-quenching technique. The amorphous nature of these glasses has been confirmed by X-ray powder diffractometry. The thermal stability of these glasses has been studied using differential scanning calorimetry (DSC). The compositional dependence of the glass transition temperature, T(g), the crystallization temperatures, T(c1) and T(c2), and the melting temperature, T(m), are reported. The glass-forming tendency, K(gl), and the activation energy of crystallization, E, are calculated. The activation energy decreases with increasing tellurium content for both sets of glasses.
Resumo:
Thin films of Sb40Se20S40 with thickness 1000 nm were prepared by thermal evaporation technique. The amorphous nature of the thin films was verified by X-ray diffractometer. The chemical composition of the deposited thin films was examined by energy dispersive X-ray analysis (EDAX). The changes in optical properties due to the influence of laser radiation on amorphous thin films of Sb40Se20S40 glassy alloy were calculated from absorbance spectra as a function of photon energy in the wavelength region 450-900 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been observed that laser-irradiation of the films leads to a decrease in optical band gap while increase in absorption coefficient. The decrease in the optical band gap is explained on the basis of change in nature of films due to disorderness. The optical changes are supported by X-ray photoelectron spectroscopy and Raman spectroscopy. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A wave-based method is developed to quantify the defect due to porosity and also to locate the porous regions, in a composite beam-type structure. Wave propagation problem for a porous laminated composite beam is modeled using spectral finite element method (SFEM), based on the modified rule of mixture approach, which is used to include the effect of porosity on the stiffness and density of the composite beam structure. The material properties are obtained from the modified rule of mixture model, which are used in a conventional SFEM to develop a new model for solving wave propagation problems in porous laminated composite beam. The influence of the porosity content on the group speed and also the effect of variation in theses parameters on the time responses are studied first, in the forward problem. The change in the time responses with the change in the porosity of the structure is used as a parameter to find the porosity content in a composite beam. The actual measured response from a structure and the numerically obtained time responses are used for the estimation of porosity, by solving a nonlinear optimization problem. The effect of the length of the porous region (in the propagation direction), on the time responses, is studied. The damage force indicator technique is used to locate the porous region in a beam and also to find its length, using the measured wave propagation responses. (C) 2012 Elsevier Ltd. All rights reserved.