334 resultados para Chromic oxide
Resumo:
Metal-insulator-semiconductor capacitors using aluminum Bi2O3 and silicon have been studied for varactor applications. Reactively sputtered Bi2O3 films which under suitable proportions of oxygen and argon and had high resistivity suitable for device applications showed a dielectric constant of 25. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
Calcined samples of chromia supported on Al2O3, ZnO, or SnO2 show both Cr(VI) and Cr(III) on the surface, Cr(VI) being preponderant in the case of Al2O3-supported catalysts. The proportion of Cr(VI) decreases with increase in Cr content of the calcined catalysts. Reduction of the supported chromia catalysts in H2 at 720 K for 1 hr gives rise to Cr(III) and Cr(V). On carrying out the dehydrogenation of cyclohexane on the chromia catalysts a higher proportion of Cr(V) is found than after treatment with hydrogen. Vanadia supported on Al2O3 or MoO3 shows significant proportion of V(IV) on carrying out the oxidation of toluene on the catalysts. Calcined MoO3 (10%)/Al2O3 shows only Mo(VI) on the surface at 300 K, but on heating to 670 K in vacuum shows the presence of a considerable proportion of Mo(V) which on cooling disproportionates to Mo(IV) and Mo(VI). Mo(V) is noticed on surfaces of this catalyst on reduction with hydrogen as also on carrying out dehydrogenation of cyclohexane. While Bi2MoO6 shows only Mo(VI) on the surface at 300 K, heating it to 670 K in vacuum changes it entirely to Mo(V) which then gives rise to Mo(IV) and Mo(VI) on cooling.
Resumo:
Complexes of lanthanide perchlorates with 4-cyano pyridine-1-oxide, 4-chloro 2-picoline-1-oxide and 4-dimethyl amino 2-picoline-1-oxide have been isolated for the first time and characterized by analysis, conductance, infrared, NMR and electronic spectra.
Resumo:
2,6-Lutidine-N-oxide (LNO) complexes of rare-earth bromides of the composition $$MBr_3 .(LNO)_{4_{ - n} } .nH_2 O$$ wheren = l for M = La, Pr, Nd, Sm, Gd, Ho, Er; andn = 0 for M = Y have been prepared and characterised by analyses, conductance and infrared data. Infrared spectra of the complexes indicate that the coordination of ligand to the metal ion takes place through the oxygen of the ligand, and the water molecule in the complexes present is coordinated to the metal. A coordination number of seven has been suggested to all the rare-earth metal ions.
Resumo:
The electronic structures of a series of 4-substituted pyridine N-oxides and 4-nitroquinoline N-oxide are investigated using the simple Pariser-Parr-Pople (PPP), a modified PPP, IEH and MINDO/2 methods. The electronic absorption band maxima and dipole moments are calculated and compared with experimental values. The photoelectron spectra of these compounds are assigned. The nature of the N-oxide group is characterized using the orbital population distributions. The antifungal activity exhibited by some of these compounds is discussed in terms of the nucleophilic frontier electron densities, superdelocalizabilities and electron acceptor properties. The effect of the electron releasing as well as the electron withdrawing substituents on the physico-chemical properties is explained.
Resumo:
Complexes of lanthanide iodides with 3-methylpyridine-1-oxide of the formula Ln(3-MePyO)8I3.xH2O where x = 0 for Ln = La and Tb, x = 1 for Ln = Pr, and x = 2 for Ln = Nd, Sm, Dy, Yb, and Y have been prepared and characterized by chemical analyses, conductance, infrared, proton nmr, and DTA data. Infrared and proton nmr data have been interpreted in terms of the coordination of the ligand to the metal ion through the oxygen of the N—O group. Proton nmr spectrum of the Yb(III) complex is indicative of a restricted rotation of the pyridine ring about the N—O bond.
Resumo:
Abstract is not available.
Resumo:
Pyridine-1-oxide complexes of lanthanide iodides of the formulaLn(PyO)8I3 whereLn=La, Pr, Nd, Tb, Dy, Er, and Yb have been prepared and characterised by analyses, molecular weight, conductance, infrared and proton NMR data. Proton NMR and IR data have shown the coordination of the ligand to the metal through the oxygen atom of the N–O group. NMR data have been interpreted in terms of a distorted square antiprismatic geometry in solution.
Resumo:
THE COMPLEXES of pyridine-l-oxide and 2- and 4-substituted pyridine-l-oxides have been investigated previously[l]. The complexes of 3-substituted pyfidine-l-oxides, however, have received little attention. The rare-earth complexes of pyridine-Ioxide[l, 2], 4-methylpyridine- l-oxide [1] and 2,6- dimethylpyfidine-l-oxide[3,4] have been reported earlier. The present paper deals with the isolation and characterisation of 3-methylpyridine-l-oxide (3-Picoline-N-oxide, 3-PicNO) complexes with rare-earth perchlorates.
Resumo:
3-Picoline-N-oxide (3-PicNO) complexes of rare-earth bromides of the formulaMBr3(3-PicNO)8–n·nH2O wheren=0 forM=La, Pr, Nd, Sm Tb or Y andn=2 forM=Ho or Yb have been prepared. Infrared and proton NMR studies indicate that the coordination of the ligand is through oxygen. Conductance data in acetonitrile suggest that two bromide ions are coordinated to the metal ion. Proton NMR studies suggest a bicapped dodecahedral arrangement of the ligands around the metal ion in solution for Pr(III), Nd(III) and Tb(III) complexes.
Resumo:
A mathematical model for doped-oxide-source diffusion is proposed. In this model the concept of segregation of impurity at the silicon-silicon dioxide is used and also a constant of “rate limitation” is introduced through a chemical reaction at the interface.
Resumo:
Complexes of lanthanide iodides with 4-methylpyridine-1-oxide and 2-methylpyridine-1-oxide of the formulae Ln(4-MePyO)8I3.xH2O (x=0 or 2) and Ln(2-MePyO)5I3.xH2O (x=0, 1 or 3) have been prepared and characterized by analyses, conductance, infrared and proton NMR data. Infrared spectra of the complexes indicate that the coordination of the ligand to the metal ion takes place through the oxygen of the N-O group of the ligand. Proton NMR data for the paramagnetic complexes indicate that both contact and pseudocontact interactions are responsible for the isotropic shifts. Proton NMR spectra of the 2-methylpyridine-1-oxide complexes indicate a restricted rotation of the ligand about the N-O group.
Resumo:
In continuation of our work on the effect of the anion on the coordination chemistry of the rare-earth metal ions, we have now extended our studies to 4-picoline-N-oxide (4-Pie NO) complexes of rare-earth bromides. By ohangi~ the method of preparation Harrison and Watsom (1) have prepared two types of Sm(IIl) complexes and three types of Eu(III) complexes of 4-pioollne-N-Oxide in the presence of perchlorate ions. We have isolated two types of pyridine-N-Oxide complexes of rare-earth bromides, also by changing the method of preparation (2). The effect of the change of the preparative method on the composition of the lanthanide complexes is exhibited in the case of other complexes also (3-6). But our attempts to prepare 4-picoline-N-Oxide of rare-earth bromides having different stoichiometries were unsucessful . The composition of the complexes is the same for all the complexes prepared. The results of the physico-chemical studies on these 4-Pic NO complexes of rare-earth bromides are discussed in the present paper.
Resumo:
This paper presents the results of an investigation conducted on the switching behavior of copper oxide. The filamentary nature of the current and also the formation of a copper channel have been observed to be associated with the process of switching. The experiments and the analysis carried out by the authors show that the formation of copper channel is due only to a secondary process and is not responsible for the actual switching of the device to the low-voltage mode. The switching, as is clear from the analysis, seems to be the result of a purely electrothermal process. The effect of the dimensions of the device on the V-I characteristics is also discussed. It has further been shown that it is possible to prevent the formation of copper channel to obtain a monoshot type of switching transition.