55 resultados para Broadband Microstrip Antennas
Resumo:
A Geodesic Constant Method (GCM) is outlined which provides a common approach to ray tracing on quadric cylinders in general, and yields all the surface ray-geometric parameters required in the UTD mutual coupling analysis of conformal antenna arrays in the closed form. The approach permits the incorporation of a shaping parameter which permits the modeling of quadric cylindrical surfaces of desired sharpness/flatness with a common set of equations. The mutual admittance between the slots on a general parabolic cylinder is obtained as an illustration of the applicability of the GCM.
Resumo:
The propagation constant of a superconducting microstrip transmission delay line is evaluated using the spectral domain immitance approach, modelling the superconductor as a surface current having an equivalent surface impedance found through the complex resistive boundary condition. The sensitivity approach is used to study the beta variations with substrate parameters and film characteristics. Results show that the surface impedance does not have much influence on beta sensitivities with respect to epsilon r, W and h. However, it can be observed that the surface impedance plays a crucial role in determining the optimum design.
Resumo:
This paper is on the design and performance analysis of practical distributed space-time codes for wireless relay networks with multiple antennas terminals. The amplify-andforward scheme is used in a way that each relay transmits a scaled version of the linear combination of the received symbols. We propose distributed generalized quasi-orthogonal space-time codes which are distributed among the source antennas and relays, and valid for any number of relays. Assuming M-PSK and M-QAM signals, we derive a formula for the symbol error probability of the investigated scheme over Rayleigh fading channels. For sufficiently large SNR, this paper derives closed-form average SER expression. The simplicity of the asymptotic results provides valuable insights into the performance of cooperative networks and suggests means of optimizing them. Our analytical results have been confirmed by simulation results, using full-rate full-diversity distributed codes.
Resumo:
Microstrip patch antennas are strong candidates for use in many wireless communications applications. This paper proposes the use of a patch antenna with two U-shaped slots to achieve dual band operation. A thick substrate helps broaden the individual bandwidths. The antenna is designed based on extensive IE3D simulation studies. A prototype antenna is fabricated and experimentally verified for the required performance.
Resumo:
This paper presents the design of a broadband antenna suitable for wireless communications operating over the frequency range of 3.1-10.6 GHz. Parametric studies on the effect of stub and elliptic slot have been carried out to arrive at optimum dimensions to achieve enhanced bandwidth of the proposed antenna. An experimental antenna has been designed and tested to validate the proposed design. Measured return loss characteristics have been compared against the simulation results. Simulated radiation patterns at 3.1 GHz, 6.85 GHz and 10.6 GHz have also been presented in this paper.
Resumo:
We report development of gas microstrip detectors using thin film and lithography techniques. The detectors were tested for their performance for X-rays (5.9 keV) and a maximum gas gain of similar to 13,000 and best resolution of similar to 12% was obtained. Factors affecting gain and resolution were investigated. The detectors were tested for their one-dimensional position sensitivity. Meandering resistive strips were used for charge division method. A position resolution of 0.48 mm was obtained.
Resumo:
The radiation resistance of off-set series slots has been calculated for microstrip lines using the method proposed by Breithaupt for strip lines. A suitable transformation is made to allow for the difference in structure. Curves relating the slot resistance to the microstrip length, width and off-set distance have been obtained. Microstrip slot antenna arrays are becoming important in applications where size and weight are of significance. The radiation resistance is a very significant parameter is the design of such arrays. Oliner first calculated the radiation conductance of centered series slots in strip transmission lines and that analysis was extended by Breithaupt to the off-set series slots in stripline. The radiation resistance of off-set series slots in microstrip lines is calculated in this paper and data are obtained for different slot lengths, slot widths and off-set values. An example of the use of these data in array antenna design in shown.
Resumo:
Nomograms have been developed for coupled microstrips. With the help of these, it is possible to design various microstrip components. The design of a multiplexer using the directional filter is described and experimental results are given. Nomograms relating the even and odd mode impedances of coupled microstrip lines to the width to height rate and spacing to height ratio have been developed using the relations formulated by Schwarzmann. A multiplexer using directional filters is designed to operate with three channels at frequencies of 3÷3, 3÷4 and 3÷5 GHz and bandwidths of 10 MHz in each channel. Experimental results are given. The design specifications are satisfied reasonably well.
Resumo:
Charts relating the capacitance to the width, spacing, thickness and height above the ground plane of coupled microstrips have been obtained. These are used to design hairpin line and hybrid hairpin line filters as well as multiplexers using microstrip comb line filters. The experimental results agree reasonably well with the design specifications. Getsinger's original charts for parallel coupled bars between parallel plates have been formulated for the microstrip case. Corresponding charts relating the capacitances to the width, spacing, thickness and height above the ground plane of coupled microstrips have been obtained. Examples of the use of these charts are shown in the design of hairpin lines and hybrid hairpin line filters as well as multiplexers using comb line filters. The hairpin line/hybrid hairpin line filters were designed to operate at a central frequency of 9÷5 GHz with 11 per cent bandwidth and 0÷5 dB ripple. The three filters constituting the comb line filters have center frequencies of 2÷4, 3÷0 and 3÷6 GHz. The components so designed were fabricated and tested. The dielectric used for the microstrip was teflon. Experimental curves for the attenuation (insertion loss) and VSWR are given. The design specifications arc satisfied quite well.