173 resultados para B. Porosity
Resumo:
The Dps (DNA-binding protein from starved cells) proteins from Mycobacterium smegmatis MsDps1 and MsDps2 are both DNA-binding proteins with some differences. While MsDps1 has two oligomeric states, with one of them responsible for DNA binding, MsDps2 has only one DNA-binding oligomeric state. Both the proteins however, show iron-binding activity. The MsDps1 protein has been shown previously to be induced under conditions of starvation and osmotic stress and is regulated by the extra cellular sigma factors sigma(H) and sigma(F). We show here, that the second Dps homologue in M. smegmatis, namely MsDps2, is purified in a DNA-bound form and exhibits nucleoid-like structures under the atomic force microscope. It appears that the N-terminal sequence of Dps2 plays a role in nucleoid formation. MsDps2, unlike MsDps1, does not show elevated expression in nutritionally starved or stationary phase conditions; rather its promoter is recognized by RNA polymerase containing sigma(A) or sigma(B), under in vitro conditions. We propose that due to the nucleoid-condensing ability, the expression of MsDps2 is tightly regulated inside the cells.
Resumo:
DNA intercalators are one of the most commonly used chemotherapeutic agents. Novel intercalating compounds of pyrimido[4',5':4,5]selenolo(2,3-b)quinoline series having a butylamino or piperazino group at fourth position (BPSQ and PPSQ, respectively) are studied. Our results showed that BPSQ induced cytotoxicity whereas PPSQ was cytostatic. The cytotoxicity induced by BPSQ was concentration- and time-dependent. Cell cycle analysis and tritiated thymidine assay revealed that BPSQ affects the cell cycle progression by arresting at S phase. The absence of p-histone H3 and reduction in the levels of PCNA in the cells treated with BPSQ further confirmed the cell cycle arrest. Further, annexin V staining, DNA fragmentation, nuclear condensation and changes in the expression levels of BCL2/BAD confirmed the activation of apoptosis. Activation of caspase 8 and lack of cleavage of caspase 9, caspase 3 and PARP suggest the possibility of BPSQ triggering extrinsic pathway for induction of apoptosis, which is discussed. Hence, we have identified a novel compound which would have clinical relevance in cancer chemotherapeutics.
Resumo:
A formal total synthesis of (-)-didemniserinolipid B from L-(+)-tartaric acid is presented. Key features of the synthesis include construction of the bicyclic acetal core from bisdimethyl amide of tartaric acid and further elaboration by cross metathesis.
Resumo:
Suspension cultures of Catharanthus roseus were used to evaluate ultraviolet-B (UV-B) treatment as an abiotic elicitor of secondary metabolites. A dispersed cell suspension culture from C. roseus leaves in late exponential phase and stationary phase were irradiated with UV-B for 5 min. The stationary phase cultures were more responsive to UV-B irradiation than late exponential phase cultures. Catharanthine and vindoline increased 3-fold and 12-fold, respectively, on treatment with a 5-min UV-B irradiation.
Resumo:
The crystal and molecular structure of N-benzyloxycarbonyl-a-aminoisobutyryl-L-prolyl methylamide, the amino terminal dipeptide fragment of alamethicin, has been determined using direct methods. The compound crystallizes in the orthorhombic system with the space group P212-21. Cell dimensions are a = 7.705 A, b = 11.365 A, and c = 21.904 A. The structure has been refined using conventional procedures to a final R factor of 0.054. The molecular structure possesses a 4 - 1 intramolecular N-H--0 hydrogen bond formed between the CO group of the urethane moiety and the NH group of the methylamide function. The peptide backbone adopts the type 111 P-turn conformation, with 42 = -51.0°, +* = -39.7",&j = -65.0', $3 = -25.4'. An unusual feature is the occurrence of the proline residue at position 3 of the P-turn. The observed structure supports the view that Aib residues initiate the formation of type 111 @-turn conformations. The pyrrolidine ring is puckered in Cy-exo fashion.
Resumo:
The granule exocytosis cytotoxicity pathway is the major molecular mechanism for cytotoxic T lymphocyte (CTL) and natural killer (NK) cytotoxicity, but the question of how these cytotoxic lymphocytes avoid self-destruction after secreting perforin has remained unresolved. We show that CTL and NK cells die within a few hours if they are triggered to degranulate in the presence of nontoxic thiol cathepsin protease inhibitors. The potent activity of the impermeant, highly cathepsin B-specific membrane inhibitors CA074 and NS-196 strongly implicates extracellular cathepsin B. CTL suicide in the presence of cathepsin inhibitors requires the granule exocytosis cytotoxicity pathway, as it is normal with CTLs from gld mice, but does not occur in CTLs from perforin knockout mice. Flow cytometry shows that CTLs express low to undetectable levels of cathepsin B on their surface before degranulation, with a substantial rapid increase after T cell receptor triggering. Surface cathepsin B eluted from live CTL after degranulation by calcium chelation is the single chain processed form of active cathepsin B. Degranulated CTLs are surface biotinylated by the cathepsin B-specific affinity reagent NS-196, which exclusively labels immunoreactive cathepsin B. These experiments support a model in which granule-derived surface cathepsin B provides self-protection for degranulating cytotoxic lymphocytes.
Resumo:
This paper deals with a batch service queue and multiple vacations. The system consists of a single server and a waiting room of finite capacity. Arrival of customers follows a Markovian arrival process (MAP). The server is unavailable for occasional intervals of time called vacations, and when it is available, customers are served in batches of maximum size ‘b with a minimum threshold value ‘a’. We obtain the queue length distributions at various epochs along with some key performance measures. Finally, some numerical results have been presented.
Resumo:
The gas-diffusion layer (GDL) influences the performance of electrodes employed with polymer electrolyte fuel cells (PEFCs). A simple and effective method for incorporating a porous structure in the electrode GDL using sucrose as the pore former is reported. Optimal (50 w/o) incorporation of a pore former in the electrode GDL facilitates the access of the gaseous reactants to the catalyst sites and improves the fuel cell performance. Data obtained from permeability and porosity measurements, single-cell performance, and impedance spectroscopy suggest that an optimal porosity helps mitigating mass-polarization losses in the fuel cell resulting in a substantially enhanced performance.
Resumo:
Enantiospecific synthesis of bio-active butenolide (+)-iso-cladospolide B from D-(-)-tartaric acid in a short synthetic sequence is presented. Pivotal reaction sequence includes cross metathesis of an alkene and Wittig olefination. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Dansylcadaverine, a cationic fluorescent probe binds to bacterial lipopolysaccharide and lipid A, and is displaced competitively by other compounds which possess affinity toward endotoxins. The binding parameters of dansylcadaverine for lipid A were determined by Scatchard analysis to be two apparently equivalent sites with apparent dissociation constants (Kd) ranging between 16 μM to 26 μM, while that obtained for core glycolipid from Salmonella minnesota Re595 yielded a Kd of 22 μM to 28 μM with three binding sites. The Kd of polymyxin B for lipid A was computed from dansylcadaverine displacement by the method of Horovitz and Levitzki (Horovitz, A., and Levitzki, A. (1987) Proc. Natl. Acad. Sci. USA 84, 6654–6658). The applicability of this method for analyzing fluorescence data was validated by comparing the Kds of melittin for lipid A obtained by direct Scatchard analysis, and by the Horovitz-Levitzki method. The displacement of dansylcadaverine from lipid A by polymyxin B was distinctly biphasic with Kds for polymyxin B-lipid A interactions corresponding to 0.4 μM and 1.5 μM, probably resulting as a consequence of lipid A being a mixture of mono- and di-phosphoryl species. This was not observed with core glycolipid, for which the Kd for polymyxin was estimated to range from 1.1 μM to 5.8 μM. The use of dansylcadaverine as a displacement probe offers a novel and convenient method of quantitating the interactions of a wide variety of substances with lipid A.
Resumo:
A practical stereoselective synthesis of cytotoxic anhydrophytosphingosine pachastrissamine (jaspine B) was achieved in 48% overall yield from D-(-)-tartaric acid. Key features of the sequence include the diastereoselective formation of a tetrol with three contiguous chiral centers, which was further elaborated to pachastrissamine. The synthetic route is operationally simple, diastereoselective and is amenable for the synthesis of a number of analogues of pachastrissamine.
Resumo:
Field-effect transistor characteristics of few-layer graphenes prepared by several methods have been investigated in comparison with those of single-layer graphene prepared by the in situ reduction of single-layer graphene oxide. Ambipolar features have been observed with single-layer graphene and n-type behaviour with all the few-layer graphenes, the best characteristics being found with the graphene possessing 2-3 layers prepared by arc-discharge of graphite in hydrogen. FETs based on boron and nitrogen doped graphene show n-type and p-type behaviour respectively. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Structural specificity for the direct vesicle−vesicle exchange of phospholipids through stable molecular contacts formed by the antibiotic polymyxin B (PxB) is characterized by kinetic and spectroscopic methods. As shown elsewhere [Cajal, Y., Rogers, J., Berg, O. G., & Jain, M. K. (1996) Biochemistry 35, 299−308], intermembrane molecular contacts between anionic vesicles are formed by a small number of PxB molecules, which suggests that a stoichiometric complex may be responsible for the exchange of phospholipids. Larger clusters containing several vesicles are formed where each vesicle can make multiple contacts if sterically allowed. In this paper we show that the overall process can be dissected into three functional steps: binding of PxB to vesicles, formation of stable vesicle−vesicle contacts, and exchange of phospholipids. Polycationic PxB binds to anionic vesicles. Formation of molecular contacts and exchange of monoanionic phospholipids through PxB contacts does not depend on the chain length of the phospholipid. Only monoanionic phospholipids (with methanol, serine, glycol, butanol, or phosphatidylglycerol as the second phosphodiester substituent in the head group) exchange through these contacts, whereas dianionic phosphatidic acid does not. Selectivity for the exchange was also determined with covesicles of phosphatidylmethanol and other phospholipids. PxB does not bind to vesicles of zwitterionic phosphatidylcholine, and its exchange in covesicles is not mediated by PxB. Vesicles of dianionic phospholipids, like phosphatidic acid, bind PxB; however, this phospholipid does not exchange. The structural features of the contacts are characterized by the spectroscopic and chemical properties of PxB at the interface. PxB in intermembrane contacts is readily accessible from the aqueous phase to quenchers and reagents that modify amino groups. Results show that PxB at the interface can exist in two forms depending on the lipid/PxB ratio. Additional studies show that stable PxB-mediated vesicle−vesicle contacts may be structurally and functionally distinct from “stalks”, the putative transient intermediate for membrane fusion. The phenomenon of selective exchange of phospholipids through peptide-mediated contacts could serve as a prototype for intermembrane targeting and sorting of phospholipids during their biosynthesis and trafficking in different compartments of a cell. The protocols and results described here also extend the syllogistic foundations of interfacial equilibria and catalysis.
Carbohydrate binding specificity of the B-cell maturation mitogen from Artocarpus integrifolia seeds
Resumo:
Artocarpin, a mannose-specific lectin, is a homotetrameric protein (M(r) 65,000) devoid of covalently attached carbohydrates and consists of four isolectins with pI in the range 5-6.5. Investigations of its carbohydrate binding specificity reveal that among monosaccharides, mannose is preferred over glucose. Among mannooligosaccharides, mannotriose (Man alpha 1-3[Man alpha 1-6]Man) and mannopentaose are the strongest ligands followed by Man alpha 1-3Man. Extension of these ligands by GlcNAc at the reducing ends of mannooligosaccharides tested remarkably improves their inhibitory potencies, while substitution of both the alpha 1-3 and alpha 1-6 mannosyl residues of mannotriose and the core pentasaccharide of N-linked glycans (Man alpha 1-3[Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc) by GlcNAc or N-acetyllactosamine in beta 1-2 linkage diminishes their inhibitory potencies. Sialylated oligosaccharides are non-inhibitory. Moreover, the substitution of either alpha 1-3 or alpha 1-6 linked mannosyl residues of M5Gn or both by mannose in alpha 1-2 linkage leads to a considerable reduction of their inhibitory power. Addition of a xylose residue in beta 1-2 linkage to the core pentasaccharide improves the inhibitory activity. Considering the fact that artocarpin has the strongest affinity for the xylose containing hepasaccharide from horseradish peroxidase, which differs significantly from all the mannose/glucose-specific lectins, it should prove a useful tool for the isolation and characterization of glycoproteins displaying such structure.
Resumo:
We discover that hexagonal holmium copper titanate (Ho2CuTiO6), has a unique and highly desirable combination of high dielectric constant, low losses, very small temperature coefficient, and low frequency dependence. Our first-principles calculations indicate that these exceptional properties result from a size-difference at the Cu/Ti B-site that suppresses the expected ferroelectric transition, combined with the dominance of intermediate-frequency polar vibrational modes in the dielectric response. Our results suggest that the use of such B-site disorder in alloys of hexagonal transition-metal oxides should generally result in similar robust dielectrics.