44 resultados para Analytic Reproducing Kernel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analytic signal (AS) was proposed by Gabor as a complex signal corresponding to a given real signal. The AS has a one-sided spectrum and gives rise to meaningful spectral averages. The Hilbert transform (HT) is a key component in Gabor's AS construction. We generalize the construction methodology by employing the fractional Hilbert transform (FrHT), without going through the standard fractional Fourier transform (FrFT) route. We discuss some properties of the fractional Hilbert operator and show how decomposition of the operator in terms of the identity and the standard Hilbert operators enables the construction of a family of analytic signals. We show that these analytic signals also satisfy Bedrosian-type properties and that their time-frequency localization properties are unaltered. We also propose a generalized-phase AS (GPAS) using a generalized-phase Hilbert transform (GPHT). We show that the GPHT shares many properties of the FrHT, in particular, selective highlighting of singularities, and a connection with Lie groups. We also investigate the duality between analyticity and causality concepts to arrive at a representation of causal signals in terms of the FrHT and GPHT. On the application front, we develop a secure multi-key single-sideband (SSB) modulation scheme and analyze its performance in noise and sensitivity to security key perturbations. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to obtain certain characterizations for the image of a Sobolev space on the Heisenberg group under the heat kernel transform. We give three types of characterizations for the image of a Sobolev space of positive order H-m (H-n), m is an element of N-n, under the heat kernel transform on H-n, using direct sum and direct integral of Bergmann spaces and certain unitary representations of H-n which can be realized on the Hilbert space of Hilbert-Schmidt operators on L-2 (R-n). We also show that the image of Sobolev space of negative order H-s (H-n), s(> 0) is an element of R is a direct sum of two weighted Bergman spaces. Finally, we try to obtain some pointwise estimates for the functions in the image of Schwartz class on H-n under the heat kernel transform. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider four-dimensional CFTs which admit a large-N expansion, and whose spectrum contains states whose conformal dimensions do not scale with N. We explicitly reorganise the partition function obtained by exponentiating the one-particle partition function of these states into a heat kernel form for the dual string spectrum on AdS(5). On very general grounds, the heat kernel answer can be expressed in terms of a convolution of the one-particle partition function of the light states in the four-dimensional CFT. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent focus of flood frequency analysis (FFA) studies has been on development of methods to model joint distributions of variables such as peak flow, volume, and duration that characterize a flood event, as comprehensive knowledge of flood event is often necessary in hydrological applications. Diffusion process based adaptive kernel (D-kernel) is suggested in this paper for this purpose. It is data driven, flexible and unlike most kernel density estimators, always yields a bona fide probability density function. It overcomes shortcomings associated with the use of conventional kernel density estimators in FFA, such as boundary leakage problem and normal reference rule. The potential of the D-kernel is demonstrated by application to synthetic samples of various sizes drawn from known unimodal and bimodal populations, and five typical peak flow records from different parts of the world. It is shown to be effective when compared to conventional Gaussian kernel and the best of seven commonly used copulas (Gumbel-Hougaard, Frank, Clayton, Joe, Normal, Plackett, and Student's T) in estimating joint distribution of peak flow characteristics and extrapolating beyond historical maxima. Selection of optimum number of bins is found to be critical in modeling with D-kernel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important question in kernel regression is one of estimating the order and bandwidth parameters from available noisy data. We propose to solve the problem within a risk estimation framework. Considering an independent and identically distributed (i.i.d.) Gaussian observations model, we use Stein's unbiased risk estimator (SURE) to estimate a weighted mean-square error (MSE) risk, and optimize it with respect to the order and bandwidth parameters. The two parameters are thus spatially adapted in such a manner that noise smoothing and fine structure preservation are simultaneously achieved. On the application side, we consider the problem of image restoration from uniform/non-uniform data, and show that the SURE approach to spatially adaptive kernel regression results in better quality estimation compared with its spatially non-adaptive counterparts. The denoising results obtained are comparable to those obtained using other state-of-the-art techniques, and in some scenarios, superior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that as n changes, the characteristic polynomial of the n x n random matrix with i.i.d. complex Gaussian entries can be described recursively through a process analogous to Polya's urn scheme. As a result, we get a random analytic function in the limit, which is given by a mixture of Gaussian analytic functions. This suggests another reason why the zeros of Gaussian analytic functions and the Ginibre ensemble exhibit similar local repulsion, but different global behavior. Our approach gives new explicit formulas for the limiting analytic function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regionalization approaches are widely used in water resources engineering to identify hydrologically homogeneous groups of watersheds that are referred to as regions. Pooled information from sites (depicting watersheds) in a region forms the basis to estimate quantiles associated with hydrological extreme events at ungauged/sparsely gauged sites in the region. Conventional regionalization approaches can be effective when watersheds (data points) corresponding to different regions can be separated using straight lines or linear planes in the space of watershed related attributes. In this paper, a kernel-based Fuzzy c-means (KFCM) clustering approach is presented for use in situations where such linear separation of regions cannot be accomplished. The approach uses kernel-based functions to map the data points from the attribute space to a higher-dimensional space where they can be separated into regions by linear planes. A procedure to determine optimal number of regions with the KFCM approach is suggested. Further, formulations to estimate flood quantiles at ungauged sites with the approach are developed. Effectiveness of the approach is demonstrated through Monte-Carlo simulation experiments and a case study on watersheds in United States. Comparison of results with those based on conventional Fuzzy c-means clustering, Region-of-influence approach and a prior study indicate that KFCM approach outperforms the other approaches in forming regions that are closer to being statistically homogeneous and in estimating flood quantiles at ungauged sites. Key Points Kernel-based regionalization approach is presented for flood frequency analysis Kernel procedure to estimate flood quantiles at ungauged sites is developed A set of fuzzy regions is delineated in Ohio, USA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binaural hearing studies show that the auditory system uses the phase-difference information in the auditory stimuli for localization of a sound source. Motivated by this finding, we present a method for demodulation of amplitude-modulated-frequency-modulated (AM-FM) signals using a ignal and its arbitrary phase-shifted version. The demodulation is achieved using two allpass filters, whose impulse responses are related through the fractional Hilbert transform (FrHT). The allpass filters are obtained by cosine-modulation of a zero-phase flat-top prototype halfband lowpass filter. The outputs of the filters are combined to construct an analytic signal (AS) from which the AM and FM are estimated. We show that, under certain assumptions on the signal and the filter structures, the AM and FM can be obtained exactly. The AM-FM calculations are based on the quasi-eigenfunction approximation. We then extend the concept to the demodulation of multicomponent signals using uniform and non-uniform cosine-modulated filterbank (FB) structures consisting of flat bandpass filters, including the uniform cosine-modulated, equivalent rectangular bandwidth (ERB), and constant-Q filterbanks. We validate the theoretical calculations by considering application on synthesized AM-FM signals and compare the performance in presence of noise with three other multiband demodulation techniques, namely, the Teager-energy-based approach, the Gabor's AS approach, and the linear transduction filter approach. We also show demodulation results for real signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbonization of milk-free coconut kernel pulp is carried out at low temperatures. The carbon samples are activated using KOH, and electrical double-layer capacitor (EDLC) properties are studied. Among the several samples prepared, activated carbon prepared at 600 A degrees C has a large surface area (1,200 m(2) g(-1)). There is a decrease in surface area with increasing temperature of preparation. Cyclic voltammetry and galvanostatic charge-discharge studies suggest that activated carbons derived from coconut kernel pulp are appropriate materials for EDLC studies in acidic, alkaline, and non-aqueous electrolytes. Specific capacitance of 173 F g(-1) is obtained in 1 M H2SO4 electrolyte for the activated carbon prepared at 600 A degrees C. The supercapacitor properties of activated carbon sample prepared at 600 A degrees C are superior to the samples prepared at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater management involves conflicting objectives as maximization of discharge contradicts the criteria of minimum pumping cost and minimum piping cost. In addition, available data contains uncertainties such as market fluctuations, variations in water levels of wells and variations of ground water policies. A fuzzy model is to be evolved to tackle the uncertainties, and a multiobjective optimization is to be conducted to simultaneously satisfy the contradicting objectives. Towards this end, a multiobjective fuzzy optimization model is evolved. To get at the upper and lower bounds of the individual objectives, particle Swarm optimization (PSO) is adopted. The analytic element method (AEM) is employed to obtain the operating potentio metric head. In this study, a multiobjective fuzzy optimization model considering three conflicting objectives is developed using PSO and AEM methods for obtaining a sustainable groundwater management policy. The developed model is applied to a case study, and it is demonstrated that the compromise solution satisfies all the objectives with adequate levels of satisfaction. Sensitivity analysis is carried out by varying the parameters, and it is shown that the effect of any such variation is quite significant. Copyright (c) 2015 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support vector machines (SVM) are a popular class of supervised models in machine learning. The associated compute intensive learning algorithm limits their use in real-time applications. This paper presents a fully scalable architecture of a coprocessor, which can compute multiple rows of the kernel matrix in parallel. Further, we propose an extended variant of the popular decomposition technique, sequential minimal optimization, which we call hybrid working set (HWS) algorithm, to effectively utilize the benefits of cached kernel columns and the parallel computational power of the coprocessor. The coprocessor is implemented on Xilinx Virtex 7 field-programmable gate array-based VC707 board and achieves a speedup of upto 25x for kernel computation over single threaded computation on Intel Core i5. An application speedup of upto 15x over software implementation of LIBSVM and speedup of upto 23x over SVMLight is achieved using the HWS algorithm in unison with the coprocessor. The reduction in the number of iterations and sensitivity of the optimization time to variation in cache size using the HWS algorithm are also shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use analytic conformal bootstrap methods to determine the anomalous dimensions and OPE coefficients for large spin operators in general conformal field theories in four dimensions containing a scalar operator of conformal dimension Delta(phi). It is known that such theories will contain an in finite sequence of large spin operators with twists approaching 2 Delta(phi) + 2n for each integer n. By considering the case where such operators are separated by a twist gap from other operators at large spin, we analytically determine the n, Delta(phi) dependence of the anomalous dimensions. We find that for all n, the anomalous dimensions are negative for Delta(phi) satisfying the unitarity bound. We further compute the first subleading correction at large spin and show that it becomes universal for large twist. In the limit when n is large, we find exact agreement with the AdS/CFT prediction corresponding to the Eikonal limit of a 2-2 scattering with dominant graviton exchange.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Helmke et al. have recently given a formula for the number of reachable pairs of matrices over a finite field. We give a new and elementary proof of the same formula by solving the equivalent problem of determining the number of so called zero kernel pairs over a finite field. We show that the problem is, equivalent to certain other enumeration problems and outline a connection with some recent results of Guo and Yang on the natural density of rectangular unimodular matrices over F-qx]. We also propose a new conjecture on the density of unimodular matrix polynomials. (C) 2016 Elsevier Inc. All rights reserved.