158 resultados para AQUEOUS BIPHASIC CATALYSIS
Resumo:
Owing to widespread applications, synthesis and characterization of silver nanoparticles is recently attracting considerable attention. Increasing environmental concerns over chemical synthesis routes have resulted in attempts to develop biomimetic approaches. One of them is synthesis using plant parts, which eliminates the elaborate process of maintaining the microbial culture and often found to be kinetically favourable than other bioprocesses. The present study deals with investigating the effect of process variables like reductant concentrations, reaction pH, mixing ratio of the reactants and interaction time on the morphology and size of silver nanoparticles synthesized using aqueous extract of Azadirachta indica (Neem) leaves. The formation of crystalline silver nanoparticles was confirmed using X-ray diffraction analysis. By means of UV spectroscopy, Scanning and Transmission Electron Microscopy techniques, it was observed that the morphology and size of the nanoparticles were strongly dependent on the process parameters. Within 4 h interaction period, nanoparticles below 20-nm-size with nearly spherical shape were produced. On increasing interaction time (ageing) to 66 days, both aggregation and shape anisotropy (ellipsoidal, polyhedral and capsular) of the particles increased. In alkaline pH range, the stability of cluster distribution increased with a declined tendency for aggregation of the particles. It can be inferred from the study that fine tuning the bioprocess parameters will enhance possibilities of desired nano-product tailor made for particular applications.
Resumo:
Catalytic activity of cordierite honeycomb by a completely new coating method for the oxidation of major hydrocarbons in exhaust gas is reported here. The new coating process consists of (a) dipping and growing γ-Al2O3 on cordierite by combustion of monolith dipped in the aqueous solution of Al(NO3)3 and oxalyldihydrazide (ODH) (or glycine) at 600 °C and active catalyst phase Ce0.98Pd0.02O2−δ on γ-Al2O3-coated cordierite again by combustion of monolith dipped in the aqueous solution of ceric ammonium nitrate, ODH and 1.2 × 10−3 M PdCl2 solution at 500 °C. Weight of active catalyst can be varied from 0.02 wt% to 2 wt% which is sufficient but can be loaded even up to 12 wt% by repeating dip dry combustion. Adhesion of catalyst to cordierite surface is via oxide growth, which is very strong. ‘HC’ oxidation over the monolith catalyst is carried out with a mixture having the composition, 470 ppm of both propene and propane and 870 ppm of both ethylene and acetylene with the varying amount of O2. Three-way catalytic test is done by putting hydrocarbon mixture along with CO (10 000 ppm), NO (2000 ppm) and O2 (15 000 ppm). Below 350 °C full conversion is achieved. In this method, handling of nano-material powder is avoided.
Resumo:
Novel chromogenic thiourea based sensors 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl ether 1 and 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl methane 2 having nitrophenyl group as signaling unit have been synthesized and characterized by spectroscopic techniques and X-ray crystallography. The both sensors show visual detection, UV-vis and NMR spectral changes in presence of fluoride and cyanide anions in organic solvent as well as in aqueous medium. The absorption spectra indicated the formation of complex between host and guest is in 1:2 stoichiometric ratios. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
New metal-organic frameworks (MOFs) [Ni(C12N2H10)(H2O)][C6H3(COO)2(COOH)] (I), [Co2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (II), [Ni2(H2O)6][C6H3(COO)3]2·(C4N2H12)(H2O)2 (III), [Ni(C13N2H14)(H2O)][C6H3(COO)2(COOH)] (IV), [Ni3(H2O)8][C6H3(COO)3] (V) and [Co(C4N2H4)(H2O)][C6H3(COO)3] (VI) {C6H3(COOH)3 = trimesic acid, C12N2H10 = 1,10-phenanthroline, C4N2H12 = piperazine dication, C13N2H14 = 1,3-bis(4-pyridyl)propane and C4N2H4 = pyrazine} have been synthesized by using an interface between two immiscible solvents, water and cyclohexanol. The compounds are constructed from the connectivity between the octahedral M2+ (M = Ni, Co) ions coordinated by oxygen atoms of carboxylate groups and water molecules and/or by nitrogen atoms of the ligand amines and the carboxylate units to form a variety of structures of different dimensionality. Strong hydrogen bonds of the type O-H···O are present in all the compounds, which give rise to supramolecularly organized higher-dimensional structures. In some cases ··· interactions are also observed. Magnetic studies indicate weak ferromagnetic interactions in I, IV and V and weak antiferromagnetic interactions in the other compounds (II, III and VI). All the compounds have been characterized by a variety of techniques.
Resumo:
An efficient method for the synthesis of symmetrical and unsymmetrical substituted thiourea derivatives by means of simple condensation between available building blocks such Lis airlines and carbon disulfide in aqueous medium is presented. This protocol works smoothly with aliphatic primary amines to afford various di- and trisubstituted thiourea derivatives. The present method is also useful ill synthesizing various substituted 2-mercapto imidazole heterocycles. This method proceeds through a xanthate (amino dithiol deivative) intermediate, unlike isothiocyanate as in all earlier known method.
Resumo:
The commercial acrylic fibre "Cashmilon" was partially hydrolyzed to convert a fraction of its nitrile (-CN) groups to carboxylic acid (-COOH) groups and then coated with polyethylenimine (PEI) resin and cross-linked with glutaraldehyde to produce a novel gel-coated fibrous sorbent with multiple functionalities of cationic, anionic and chelating types, and significantly faster sorption kinetics than bead-form sorbents. The sorption properties of the fibrous sorbent were measured using Zn(II) in aqueous solution as the sorbate to determine the effects of pH and the presence of common ions in the solution on the sorption capacity. The rate of sorption on the gel-coated fibre was measured in comparison with that on Amberlite IRA-68 weak-base resin beads, to demonstrate the marked difference between fibre and bead-form sorbents in their kinetic behaviour.
Resumo:
We have characterized the phase behavior of mixtures of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the organic salt 3-sodium-2-hydroxy naphthoate (SHN) over a wide range of surfactant concentrations using polarizing optical microscopy and X-ray diffraction. A variety of liquid crystalline phases, such as hexagonal, lamellar with and without curvature defects, and nematic, are observed in these mixtures. At high temperatures the curvature defects in the lamellar phase are annealed gradually on decreasing the water content. However, at lower temperatures these two lamellar structures are separated by an intermediate phase, where the bilayer defects appear to order into a lattice. The ternary phase diagram shows a high degree of symmetry about the line corresponding to equimolar CTAB/SHN composition, as in the case of mixtures of cationic and anionic surfactants.
Resumo:
Structural specificity for the direct vesicle−vesicle exchange of phospholipids through stable molecular contacts formed by the antibiotic polymyxin B (PxB) is characterized by kinetic and spectroscopic methods. As shown elsewhere [Cajal, Y., Rogers, J., Berg, O. G., & Jain, M. K. (1996) Biochemistry 35, 299−308], intermembrane molecular contacts between anionic vesicles are formed by a small number of PxB molecules, which suggests that a stoichiometric complex may be responsible for the exchange of phospholipids. Larger clusters containing several vesicles are formed where each vesicle can make multiple contacts if sterically allowed. In this paper we show that the overall process can be dissected into three functional steps: binding of PxB to vesicles, formation of stable vesicle−vesicle contacts, and exchange of phospholipids. Polycationic PxB binds to anionic vesicles. Formation of molecular contacts and exchange of monoanionic phospholipids through PxB contacts does not depend on the chain length of the phospholipid. Only monoanionic phospholipids (with methanol, serine, glycol, butanol, or phosphatidylglycerol as the second phosphodiester substituent in the head group) exchange through these contacts, whereas dianionic phosphatidic acid does not. Selectivity for the exchange was also determined with covesicles of phosphatidylmethanol and other phospholipids. PxB does not bind to vesicles of zwitterionic phosphatidylcholine, and its exchange in covesicles is not mediated by PxB. Vesicles of dianionic phospholipids, like phosphatidic acid, bind PxB; however, this phospholipid does not exchange. The structural features of the contacts are characterized by the spectroscopic and chemical properties of PxB at the interface. PxB in intermembrane contacts is readily accessible from the aqueous phase to quenchers and reagents that modify amino groups. Results show that PxB at the interface can exist in two forms depending on the lipid/PxB ratio. Additional studies show that stable PxB-mediated vesicle−vesicle contacts may be structurally and functionally distinct from “stalks”, the putative transient intermediate for membrane fusion. The phenomenon of selective exchange of phospholipids through peptide-mediated contacts could serve as a prototype for intermembrane targeting and sorting of phospholipids during their biosynthesis and trafficking in different compartments of a cell. The protocols and results described here also extend the syllogistic foundations of interfacial equilibria and catalysis.
Resumo:
Solutions of potassium chloride (pH-buffered and 1-molat) equilibrated at 350°C with pyrrhotite, pyrite, and magnetite contained approximately 1 millimole of reduced sulfur and less than 0.1 millimole of oxidized sulfur per kilogram. Similar solutions equilibrated with pyrite, magnetite, and hematite contained approximately 1 millimole of reduced sulfur, but 3 to 6 millimoles of oxidized sulfur per kilogram. Both types of solutions contained less than 0.1 millimole of iron per kilogram at pH ≥ 6 and approximately 100 millimoles per kilogram at pH 2.
Resumo:
The commercial acrylic fibre "Cashmilon" was partially hydrolyzed to convert a fraction of its nitrile (-CN) groups to carboxylic acid (-COOH) groups and then coated with polyethylenimine (PEI) resin and cross-linked with glutaraldehyde to produce a novel gel-coated fibrous sorbent with multiple functionalities of cationic, anionic and chelating types, and significantly faster sorption kinetics than bead-form sorbents. The sorption properties of the fibrous sorbent were measured using Zn(II) in aqueous solution as the sorbate to determine the effects of pH and the presence of common ions in the solution on the sorption capacity. The rate of sorption on the gel-coated fibre was measured in comparison with that on Amberlite IRA-68 weak-base resin beads, to demonstrate the marked difference between fibre and bead-form sorbents in their kinetic behaviour.
Resumo:
It was found that ceric oxalate is an intermediate product in the oxidation of oxalic acid by ammonium hexanitrato cerate in solvents such as acetonitrile, and a mixture of acetonitrile and glacial acetic acid. Conditions for the formation of ceric oxalate and its decomposition into carbon dioxide and cerous oxalate have been studied. An analytical method for the estimation of oxalic acid in non-aqueous media has been evolved based on this reaction.
Resumo:
Using a pulse method the ultrasonic absorption has been studied in the frequency range of 2 to 10 Mc/s in dilute aqueous solutions of nitrogen tetroxide gas at room temperature. The absorption peaks (αλ vs frequency) observed in this study are attributed to the ionic dissociation reaction of the nitrous acid into its constituent ions. The rate constants of the forward and backward reactions are calculated using the theory of Tabuchi. The variation of the logarithm of the rate constant of the bimolecular ionic reaction, namely, log10 kb, with the square root of ionic strength qualitatively follows Brönsted's theory for ionic reactions in solutions.
Resumo:
Using the pulse method in the range of 2 to 26Mc's the ultrasonic absorption, velocity and the adiabatic compressibility have been studied in eleven aqueous acetate solutions up to a concentration of 1 mole/litre. The substances studied are the acetates of lithium, sodium, potassium, ammonium, magnesium, calcium, strontium, barium, zinc, cadmium and lead. Absorption in mercuric acetate has been studied only at 2 and 6 Mc/s. Two regions of relaxation are noticed, one below 10 Mc/s and the other between 10 and 26 Mc/s. The first relaxation is ascribed to the dissociation reaction of the salt and the second one to the monomerdimer reaction of the acetic acid formed by the hydrolysis of the salt in water.