60 resultados para 329-U1367E
Resumo:
The effect of Raman scattering on co-propagation of two short optical pulses is considered. The intra pulse Raman scattering causes the self-frequency shift of each pulse. The effect of the inter pulse Raman scattering is to enhance the frequency shift while the stimulated Raman scattering (SRS) term suppresses (enhances) the frequency shift if the center frequency difference between the optical pulses falls to the right (left) of the Raman gain peak. An expression for the frequency shift as a function of the propagation distance is obtained.
Resumo:
It is proved that the infinitesimal look-ahead and look-back σ-fields of a random process disagree at atmost countably many time instants.
Resumo:
The near orifice spray breakup at low GLR (gas to liquid ratio by mass) values in an effervescent atomizer is studied experimentally using water as a simulant and air as atomizing gas. From the visualizations, the near orifice spray structures are classified into three modes: discrete bubble explosions, continuous bubble explosions and annular conical spray. The breakup of the spray is quantified in terms of the mean bubble bursting distance from the orifice. The parametric study indicates that the mean bubble bursting distance mainly depends on airflow rate, jet diameter and mixture velocity. It is also observed that the jet diameter has a dominant effect on the bubble bursting distance when compared to mixture velocity at a given airflow rate. The mean bubble bursting distance is shown to be governed by a nondimensional two-phase flow number consisting of all the aforementioned parameters. The location of bubble bursting is found to be highly unsteady spatially, which is influenced by flow dynamics inside the injector. It is proposed that this unsteadiness in jet breakup length is a consequence of varying degree of bubble expansion caused due to the intermittent occurrence of single phase and two-phase flow inside the orifice.
Resumo:
With construction of a thermochemical energy conversion prototype system to store solar heat, thermal dissociation of pellets of Ca(OH)2 and hydration of CaO have been investigated in some detail for its application to the system. The inorganic substance is very attractive as a material for long term heat storage, but molar density changes associated with the reaction are fairly large. Therefore, this factor has been taken into account in the kinetic equation. The importance of additives and pellet size has been discussed considering reactivity and strength of pellets. An analysis has been attempted when chemical reaction is important. The deformation of pellets was observed during hydration.
Resumo:
A complete cDNA encoding a novel hybrid Pro-rich protein (HyPRP) was identified by differentially screening 3x10(4) recombinant plaques of a Cuscuta reflexa cytokinin-induced haustorial cDNA library constructed in lambda gt10. The nucleotide (nt) sequence consists of: (i) a 424-bp 5'-non coding region having five start codons (ATGs) and three upstream open reading frames (uORFs); (ii) an ORF of 987 bp with coding potential for a 329-amino-acid (aa) protein of M(r), 35203 with a hydrophobic N-terminal region including a stretch of nine consecutive Phe followed by a Pro-rich sequence and a Cys-rich hydrophobic C terminus; and (iii) a 178-bp 3'-UTR (untranslated region). Comparison of the predicted aa sequence with the NBRF and SWISSPROT databases and with a recent report of an embryo-specific protein of maize [Jose-Estanyol et al., Plant Cell 4 (1992) 413-423] showed it to be similar to the class of HyPRPs encoded by genes preferentially expressed in young tomato fruits, maize embryos and in vitro-cultured carrot embryos. Northern analysis revealed an approx. 1.8-kb mRNA of this gene expressed in the subapical region of the C. reflexa vine which exhibited maximum sensitivity to cytokinin in haustorial induction.
Resumo:
In social selection the phenotype of an individual depends on its own genotype as well as on the phenotypes, and so genotypes, of other individuals. This makes it impossible to associate an invariant phenotype with a genotype: the social context is crucial. Descriptions of metazoan development, which often is viewed as the acme of cooperative social behaviour, ignore or downplay this fact. The implicit justification for doing so is based on a group-selectionist point of view. Namely, embryos are clones, therefore all cells have the same evolutionary interest, and the visible differences between cells result from a common strategy. The reasoning is flawed, because phenotypic heterogeneity within groups can result from contingent choices made by cells from a flexible repertoire as in multicellular development. What makes that possible is phenotypic plasticity, namely the ability of a genotype to exhibit different phenotypes. However, co-operative social behaviour with division of labour requires that different phenotypes interact appropriately, not that they belong to the same genotype, or have overlapping genetic interests. We sketch a possible route to the evolution of social groups that involves many steps: (a) individuals that happen to be in spatial proximity benefit simply by virtue of their number; (b) traits that are already present act as preadaptations and improve the efficiency of the group; and (c) new adaptations evolve under selection in the social context-that is, via interactions between individuals-and further strengthen group behaviour. The Dictyostelid or cellular slime mould amoebae (CSMs) become multicellular in an unusual way, by the aggregation of free-living cells. In nature the resulting group can be genetically homogeneous (clonal) or heterogeneous (polyclonal); in either case its development, which displays strong cooperation between cells (to the extent of so-called altruism) is not affected. This makes the CSMs exemplars for the study of social behaviour.
Resumo:
We report here on the results of a series of experiments carried out on a turbulent spot in a distorted duct to study the effects of a divergence with straight streamlines preceded by a short stretch of transverse streamline curvature, both in the absence of any pressure gradient. It is found that the distortion produces substantial asymmetry in the spot: the angles at which the spot cuts across the local streamlines are altered dramatically (in contradiction of a hypothesis commonly made in transition zone modelling), and the Tollmien-Schlichting waves that accompany the wing tips of the spot are much stronger on the outside of the bend than on the inside. However there is no strong effect on the internal structure of the spot and the eddies therein, or on such propagation characteristics as overall spread rate and the celerities of the leading and trailing edges. Both lateral streamline curvature and non-homogeneity of the laminar boundary layer into which the spot propagates are shown to be strong factors responsible for the observed asymmetry. It is concluded that these factors produce chiefly a geometric distortion of the coherent structure in the spot, but do not otherwise affect its dynamics in any significant way.
Resumo:
Interaction between two conical sheets of liquid formed by a coaxial swirl injector has been studied using water in the annular orifice and potassium permanganate solution in the inner orifice. Experiments using photographic techniques have been conducted to study the influence of the inner jet on outer conical sheet spray characteristics such as spray cone angle and break-up length. The core spray has a strong influence on the outer sheet when the pressure drop in the latter is low. This is attributed to the pressure variations caused by ejector effects. This paper also discusses the merging and separation behavior of the liquid sheets which exhibits hysteresis effect while injector pressure drop is varied.
Resumo:
We report the results of Monte Carlo simulation of the phase diagram and oxygen ordering in YBa2Cu3O6+x for low intra-sublattice repulsion. At low temperatures, apart from tetragonal (T), orthorhombic (OI) and 'double cell' ortho II phases, there is evidence for two additional orthorhombic phases labelled here as OIBAR and OIII. At high temperatures, there was no evidence for the decomposition of the OI phase into the T and OI phases. We find qualitative agreement with experimental observations and cluster-variation method results.
Resumo:
A facile oxidative cleavage of cyclic acetals to their respective esters using an inexpensive reagent system, sodium perborate/acetic anhydride is described.
Resumo:
Results of a study of dc magnetization M(T,H), performed on a Nd(0.6)Pb(0.4)MnO(3) single crystal in the temperature range around T(C) (Curie temperature) which embraces the supposed critical region \epsilon\=\T-T(C)\/T(C)less than or equal to0.05 are reported. The magnetic data analyzed in the critical region using the Kouvel-Fisher method give the values for the T(C)=156.47+/-0.06 K and the critical exponents beta=0.374+/-0.006 (from the temperature dependence of magnetization) and gamma=1.329+/-0.003 (from the temperature dependence of initial susceptibility). The critical isotherm M(T(C),H) gives delta=4.54+/-0.10. Thus the scaling law gamma+beta=deltabeta is fulfilled. The critical exponents obey the single scaling equation of state M(H,epsilon)=epsilon(beta)f(+/-)(H/epsilon(beta+gamma)), where f(+) for T>T(C) and f(-) for T
Resumo:
The emf of the cell, Pt, Ar + O2 + SO2 + SO3/Na2SO4-I/Fe2O2 + Fe2(SO4)3, Pt, has been measured in the temperature range 800 to 1000 K, using a gas mixture of known input composition as the reference electrode. The equilibrium composition of the reference gas at the measuring temperatures was computed using the thermodynamic data on the gaseous species reported in the literature. A mixture of ferric oxide and sulfate was kept in a closed system to ensure establishment of equilibrium partial pressure at the electrode. The cell was designed to avoid physical contact between Fe2(SO4)3 and Na2SO4 electrolyte. Uncertainties arising from the formation of sulfate solid solution were thus eliminated. The Gibbs’ energy of formation of ferric sulfate calculated from the emf is discussed in comparison with data reported in the literature. There is no evidence for the formation of oxysulfates in the Fe-S-0 system. Based on the results obtained in the present study for Fe2(SO4)3 and literature data for other phases, chemical potential diagrams have been constructed for the Fe-S-O system at 900 and 1100 K.
Resumo:
Natural frequencies and surge response of the windings of 3-phase transformers have been determined in the past by neglecting the capacitive and inductive couplings between the phase windings. This paper shows that these assumptions are not valid and presents a new method of formulating equivalent networks of 3-phase transformer windings for the various winding connections and terminal conditions. By utilizing these equivalent networks the natural frequencies and surge response of the windings can be determined. Tests made on a model transformer showed good correlation with calculated results.