143 resultados para 28S gene
Resumo:
Purpose: Mutations in IDH3B, an enzyme participating in the Krebs cycle, have recently been found to cause autosomal recessive retinitis pigmentosa (arRP). The MDH1 gene maps within the RP28 arRP linkage interval and encodes cytoplasmic malate dehydrogenase, an enzyme functionally related to IDH3B. As a proof of concept for candidate gene screening to be routinely performed by ultra high throughput sequencing (UHTs), we analyzed MDH1 in a patient from each of the two families described so far to show linkage between arRP and RP28. Methods: With genomic long-range PCR, we amplified all introns and exons of the MDH1 gene (23.4 kb). PCR products were then sequenced by short-read UHTs with no further processing. Computer-based mapping of the reads and mutation detection were performed by three independent software packages. Results: Despite the intrinsic complexity of human genome sequences, reads were easily mapped and analyzed, and all algorithms used provided the same results. The two patients were homozygous for all DNA variants identified in the region, which confirms previous linkage and homozygosity mapping results, but had different haplotypes, indicating genetic or allelic heterogeneity. None of the DNA changes detected could be associated with the disease. Conclusions: The MDH1 gene is not the cause of RP28-linked arRP. Our experimental strategy shows that long-range genomic PCR followed by UHTs provides an excellent system to perform a thorough screening of candidate genes for hereditary retinal degeneration.
Resumo:
Background: Resistin is a cysteine rich protein, mainly expressed and secreted by circulating human mononuclear cells. While several factors responsible for transcription of mouse resistin gene have been identified, not much is known about the factors responsible for the differential expression of human resistin.Methodology/Principal Finding: We show that the minimal promoter of human resistin lies within similar to 80 bp sequence upstream of the transcriptional start site (-240) whereas binding sites for cRel, CCAAT enhancer binding protein alpha (C/EBP-alpha), activating transcription factor 2 (ATF-2) and activator protein 1 (AP-1) transcription factors, important for induced expression, are present within sequences up to -619. Specificity Protein 1(Sp1) binding site (-276 to -295) is also present and an interaction of Sp1 with peroxisome proliferator activating receptor gamma (PPAR gamma) is necessary for constitutive expression in U937 cells. Indeed co-immunoprecipitation assay demonstrated a direct physical interaction of Sp1 with PPAR gamma in whole cell extracts of U937 cells. Phorbol myristate acetate (PMA) upregulated the expression of resistin mRNA in U937 cells by increasing the recruitment of Sp1, ATF-2 and PPAR gamma on the resistin gene promoter. Furthermore, PMA stimulation of U937 cells resulted in the disruption of Sp1 and PPAR gamma interaction. Chromatin immunoprecipitation (ChIP) assay confirmed the recruitment of transcription factors phospho ATF-2, Sp1, Sp3, PPAR gamma, chromatin modifier histone deacetylase 1 (HDAC1) and the acetylated form of histone H3 but not cRel, C/EBP-alpha and phospho c-Jun during resistingene transcription.Conclusion: Our findings suggest a complex interplay of Sp1 and PPAR gamma along with other transcription factors that drives the expression of resistin in human monocytic U937 cells.
Resumo:
Gene expression noise results in protein number distributions ranging from long-tailed to Gaussian. We show how long-tailed distributions arise from a stochastic model of the constituent chemical reactions and suggest that, in conjunction with cooperative switches, they lead to more sensitive selection of a subpopulation of cells with high protein number than is possible with Gaussian distributions. Single-cell-tracking experiments are presented to validate some of the assumptions of the stochastic simulations. We also examine the effect of DNA looping on the shape of protein distributions. We further show that when switches are incorporated in the regulation of a gene via a feedback loop, the distributions can become bimodal. This might explain the bimodal distribution of certain morphogens during early embryogenesis.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Purpose: Mutations in IDH3B, an enzyme participating in the Krebs cycle, have recently been found to cause autosomal recessive retinitis pigmentosa (arRP). The MDH1 gene maps within the RP28 arRP linkage interval and encodes cytoplasmic malate dehydrogenase, an enzyme functionally related to IDH3B. As a proof of concept for candidate gene screening to be routinely performed by ultra high throughput sequencing (UHTs), we analyzed MDH1 in a patient from each of the two families described so far to show linkage between arRP and RP28. Methods: With genomic long-range PCR, we amplified all introns and exons of the MDH1 gene (23.4 kb). PCR products were then sequenced by short-read UHTs with no further processing. Computer-based mapping of the reads and mutation detection were performed by three independent software packages. Results: Despite the intrinsic complexity of human genome sequences, reads were easily mapped and analyzed, and all algorithms used provided the same results. The two patients were homozygous for all DNA variants identified in the region, which confirms previous linkage and homozygosity mapping results, but had different haplotypes, indicating genetic or allelic heterogeneity. None of the DNA changes detected could be associated with the disease.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The sequence specificity of the recombination activating gene (RAG) complex during V(D)J recombination has been well studied. RAGs can also act as structure-specific nuclease; however, little is known about the mechanism of its action. Here, we show that in addition to DNA structure, sequence dictates the pattern and efficiency of RAG cleavage on altered DNA structures. Cytosine nucleotides are preferentially nicked by RAGs when present at single-stranded regions of heteroduplex DNA. Although unpaired thymine nucleotides are also nicked, the efficiency is many fold weaker. Induction of single- or double-strand breaks by RAGs depends on the position of cytosines and whether it is present on one or both of the strands. Interestingly, RAGs are unable to induce breaks when adenine or guanine nucleotides are present at single-strand regions. The nucleotide present immediately next to the bubble sequence could also affect RAG cleavage. Hence, we propose “C(d)C(S)C(S)” (d, double-stranded; s, single-stranded) as a consensus sequence for RAG-induced breaks at single-/double-strand DNA transitions. Such a consensus sequence motif is useful for explaining RAG cleavage on other types of DNA structures described in the literature. Therefore, the mechanism of RAG cleavage described here could explain facets of chromosomal rearrangements specific to lymphoid tissues leading to genomic instability.
Resumo:
Background & objectives: Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and involved in DNA synthesis, DNA repair and DNA methylation. The two common functional polymorphisms of MTHFR, 677C -> T and 1298 A -> C have shown to impact several diseases including cancer. This case-control study was undertaken to analyse the association of the MTHFR gene polymorphisms 677 C -> T and 1298 A -> C and risk of colorectal cancer (CRC).Methods: One hundred patients with a confirmed histopathologic diagnosis of CRC and 86 age and gender matched controls with no history of cancer were taken for this study. DNA was isolated from peripheral blood samples and the genotypes were determined by PCR-RFLP. The risk association was estimated by compounding odds ratio (OR) with 95 per cent confidence interval (CI). Results: Genotype frequency of MTHFR 677 CC, CT and TT were 76.7, 22.1 and 1.16 per cent in controls, and 74,25 and 1.0 per cent among patients. The 'T' allele frequency was 12.21 and 13.5 per cent in controls and patients respectively. The genotype frequency of MTHFR 1298 AA, AC, and CC were 25.6, 58.1 and 16.3 per cent for controls and 22, 70 and 8 per cent for patents respectively. The 'C' allele frequency for 1298 A -> C was 43.0 and 45.3 per cent respectively for controls and patients. The OR for 677 CT was 1.18 (95% CI 0.59-2.32, P = 0.642), OR for 1298 AC was 1.68 (95% CI 0.92-3.08, P = 0.092) and OR for 1298 CC was 0.45(95% CI 0.18-1.12, P = 0.081). The OR for the combined heterozygous state (677 CT and 1298 AC) was 1.18(95% CI 0.52-2.64, P =0.697).Interpretation & conclusion: The frequency of the MTHFR 677 TT genotype is rare as compared to 1298 CC genotype in the population studied. There was no association between 677 C -> T and 1298 A -> C polymorphisms and risk of CRC either individually or in combination. The homozygous state for 1298 A -> C polymorphism appears to slightly lower risk of CRC. This needs to be confirmed with a larger sample size.
Resumo:
Most human ACTA1 skeletal actin gene mutations cause dominant, congenital myopathies often with severely reduced muscle function and neonatal mortality. High sequence conservation of actin means many mutated ACTA1 residues are identical to those in the Drosophila Act88F, an indirect flight muscle specific sarcomeric actin. Four known Act88F mutations occur at the same actin residues mutated in ten ACTA1 nemaline mutations, A138D/P, R256H/L, G268C/D/R/S and R372C/S. These Act88F mutants were examined for similar muscle phenotypes. Mutant homozygotes show phenotypes ranging from a lack of myofibrils to almost normal sarcomeres at eclosion. Aberrant Z-disc-like structures and serial Z-disc arrays, ‘zebra bodies’, are observed in homozygotes and heterozygotes of all four Act88F mutants. These electron-dense structures show homologies to human nemaline bodies/rods, but are much smaller than those typically found in the human myopathy. We conclude that the Drosophila indirect flight muscles provide a good model system for studying ACTA1 mutations.
Resumo:
Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in folate metabolism and is involved in DNA synthesis, DNA repair and DNA methylation. Genetic polymorphisms of this enzyme have been shown to impact several diseases, including cancer. Leukemias are malignancies arising from rapidly proliferating hematopoietic cells having great requirement of DNA synthesis. This case-control study was undertaken to analyze the association of the MTHFR gene polymorphisms 677 C"T and 1298 A"C and the risk of acute lymphoblastic leukemia in children. Materials and Methods: Eighty-six patients aged below 15 years with a confirmed diagnosis of acute lymphoblastic leukemia (ALL) and 99 matched controls were taken for this study. Analysis of the polymorphisms was done using the polymerase chain reaction -restriction fragment length polymorphism (PCR-RFLP) method. Results: Frequency of MTHFR 677 CC and CT were 85.9% and 14.1% in the controls, and 84.9% and 15.1% in the cases. The 'T' allele frequency was 7% and 7.5% in cases and controls respectively. The frequency of MTHFR 1298 AA, AC, and CC were 28.3%, 55.6% and 16.1% for controls and 23.3%, 59.3% and 17.4% for cases respectively. The 'C' allele frequency for 1298 A→C was 43.9% and 47% respectively for controls and cases. The odds ratio (OR) for C677T was 1.08 (95% CI 0.48- 2.45, p = 0.851) and OR for A1298C was 1.29(95% CI 0.65-2.29, p = 0.46) and OR for 1298 CC was 1.31 (95% CI 0.53-3.26, p =0.56). The OR for the combined heterozygous status (677 CT and 1298 AC) was 1.94 (95% CI 0.58 -6.52, p = 0.286). Conclusion: The prevalence of 'T' allele for 677 MTHFR polymorphism was low in the population studied. There was no association between MTHFR 677 C→T and 1298 A→C gene polymorphisms and risk of ALL, which may be due to the small sample size.
Resumo:
The cloned DNA fragment of the cytochrome P-450b/e gene containing the upstream region from position -179 through part of the first exon is faithfully transcribed in freeze-thawed rat liver nuclei. Phenobarbitone treatment of the animal strikingly increases this transcription, and the increase is blocked by cycloheximide (protein synthesis inhibitor) or CoCl2 (heme biosynthetic inhibitor) treatment of animals. This picture correlates very well with the reported cytochrome P-450b/e mRNA levels in vivo and run-on transcription rates in vitro under these conditions. The upstream region (from position -179) was assessed for protein binding with nuclear extracts by nitrocellulose filter binding, gel retardation, DNase I treatment ("footprinting"), and Western blot analysis. Phenobarbitone treatment dramatically increases protein binding to the upstream region, an increase once again blocked by cycloheximide or CoCl2 treatments. Addition of heme in vitro to heme-deficient nuclei and nuclear extracts restores the induced levels of transcription and protein binding to the upstream fragment, respectively. Thus, drug-mediated synthesis and heme-modulated binding of a transcription factor(s) appear involved in the transcriptional activation of the cytochrome P-450b/e genes, and an 85-kDa protein may be a major factor in this regard.
Resumo:
Purpose: Limbal stem cell deficiency is a challenging clinical problem and the current treatment involves replenishing the depleted limbal stem cell (LSC) pool by either limbal tissue transplantation or use of cultivated limbal epithelial cells (LEC). Our experience of cultivating the LEC on denuded human amniotic membrane using a feeder cell free method, led to identification of mesenchymal cells of limbus (MC-L), which showed phenotypic resemblance to bone marrow derived mesenchymal stem cells (MSC-BM). To understand the transcriptional profile of these cells, microarray experiments were carried out.Methods: RNA was isolated from cultured LEC, MC-L and MSC-BM and microarray experiments were carried out by using Agilent chip (4x44 k). The microarray data was validated by using Realtime and semiquntitative reverse transcription polymerase chain reaction. Results: The microarray analysis revealed specific gene signature of LEC and MC-L, and also their complementary role related to cytokine and growth factor profile, thus supporting the nurturing roles of the MC-L. We have also observed similar and differential gene expression between MC-L and MSC-BM.Conclusions: This study represents the first extensive gene expression analysis of limbal explant culture derived epithelial and mesenchymal cells and as such reveals new insight into the biology, ontogeny, and in vivo function of these cells.
Resumo:
Inhibitors of heme biosynthesis such as CoCl2, 3-amino-1,2,4-triazole, and thioacetamide block the 3-methylcholanthrene-mediated induction of cytochrome P-450 (c + d) messenger RNAs and their transcription in rat liver. This effect is specific, since the messenger RNA levels for albumin and glutathione transferase (Ya + Yc) and their transcription are not significantly influenced under conditions of heme depletion. Exogenous administration of heme at very low doses (50 μg/100 g body wt) is able to completely counteract the effects of the heme biosynthetic inhibitors on cytochrome P-450 (c + d) messenger RNA levels and their transcription. This constitutes a direct proof for the role of heme as a positive regulator of cytochrome P-450 gene transcription.
Resumo:
Administration of 3-methylcholanthrene (MC) to rats results in a striking increase in the transcription of cytochrome P-450 (c+d) messenger RNA with isolated nuclei, which is blocked by the simultaneous administration of cobalt chloride, an inhibitor of heme biosynthesis. Transcription of cytochrome P-450 (c+d) mRNAs with nuclei isolated from MC treated rats shows a linear increase with time of incubation, whereas it shows a progressive decrease with incubation time in the case of nuclei isolated from MC+CoCl2 treated rats. Addition of heme in vitro (10−6M) to the latter nuclei results in a significant counteraction of the decreased cytochrome P-450 (c+d) mRNA transcription. The inhibition in transcription rates observed in MC+CoCl2 treated rat liver nuclei is more pronounced with the seventh exon probe than with the second exon probe. Once again, in vitro heme addition can counteract the inhibition observed with both the probes. Since run off transcription with isolated nuclei represents essentially elongation of the initiated transcripts, the data obtained can be interpreted on the basis that heme regulates cytochrome P-450 gene transcription elongation.
Resumo:
The 2.3 kb BamHI fragment from the colitis bacteriophage DNA was transcribed and translated into a 20 kd structural protein P6, in a coupled transcription-translation system derived from Escherichia coli. This protein was expressed in vivo by the 2.3 kb DNA cloned in pBR322. The gene with the regulatory elements for this protein was located on the 680 bp AvaII fragment of the insert DNA. It hybridized with two RNAs of sizes 520 and 1630 nucleotides indicating that both are messengers for the 20 kd protein. Dot-blot hybridization showed that the transcripts for P6 reached a maximum level at 12 min after phage infection.