508 resultados para TEMPERATURE RANGE 0065-0273K
Resumo:
Dielectric materials with high tunability, low loss, and desired range of permittivity are an attractive class of materials for a variety of applications in microwave components such as tunable filters, phase shifters, antennas, etc. In this article, we have investigated the low frequency dielectric properties of BaZrO3/BaTiO3 and SrTiO3/BaZrO3 superlattices of varying modulation periods for the potential application toward electrically tunable devices. The dielectric response of the superlattices as a function of temperature revealed remarkable stability for both types of superlattices, with no observed dielectric anomalies within that range. Dielectric losses were also nominally low with minimal variation within the measured temperature range. Sufficiently high tunability of ∼ 40% was observed for the BaZrO3/BaTiO3 superlattices at the lowest individual layer thicknesses. In comparison, the SrTiO3/BaZrO3 superlattices showed a minimum tunability for lowest period structures. It showed maximum tunability of ∼ 20% at 10 kHz and room temperature at an intermediate dimension of 3.85 nm periodicity superlattice. The tunability value degraded with increasing as well as decreasing periodicities for the SrTiO3/BaZrO3 superlattices. The dielectric response has been explained on the basis of size effects, interlayer coupling between dissimilar materials, domain contribution, and depolarizing electric fields.
Resumo:
Structural and electrical properties of Eu2O3 films grown on Si(100) in 500–600 °C temperature range by low pressure metalorganic chemical vapor deposition are reported. As-grown films also possess the impurity Eu1−xO phase, which has been removed upon annealing in O2 ambient. Film’s morphology comprises uniform spherical mounds (40–60 nm). Electrical properties of the films, as examined by capacitance-voltage measurements, exhibit fixed oxide charges in the range of −1.5×1011 to −6.0×1010 cm−2 and dielectric constant in the range of 8–23. Annealing has resulted in drastic improvement of their electrical properties. Effect of oxygen nonstoichiometry on the film’s property is briefly discussed.
Resumo:
Homogeneous thin films of Sr(0.6)Ca(0.4)TiO(3) (SCT40) and asymmetric multilayer of SrTiO(3) (STO) and CaTiO(3) (CTO) were fabricated on Pt/Ti/SiO(2)/Si substrates by using pulsed laser deposition technique. The electrical behavior of films was observed within a temperature range of 153 K-373 K. A feeble dielectric peak of SCT40 thin film at 273 K is justified as paraelectric to antiferroelectric phase transition. Moreover, the Curie-Weiss temperature, determined from the epsilon'(T) data above the transition temperature is found to be negative. Using Landau theory, the negative Curie-Weiss temperature is interpreted in terms of an antiferroelectric transition. The asymmetric multilayer exhibits a broad dielectric peak at 273 K. and is attributed to interdiffusion at several interfaces of multilayer. The average dielectric constants for homogeneous Sr(0.6)Ca(0.4)TiO(3) films (similar to 650) and asymmetric multilayered films (similar to 350) at room temperature are recognized as a consequence of grain size effect. Small frequency dispersion in the real part of the dielectric constants and relatively low dielectric losses for both cases ensure high quality of the films applicable for next generation integrated devices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Recent optical kerr effect (OKE) studies have demonstrated that orientational relaxation of rod-like nematogens exhibits temporal power law decay at intermediate times not only near the isotropic–nematic (I–N) phase boundary but also in the nematic phase. Such behaviour has drawn an intriguing analogy with supercooled liquids. We have investigated both collective and single-particle orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I–N phase boundary, the system behaves remarkably like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system. A model liquid crystal, consisting of disk-like molecules, has also been investigated in molecular dynamics simulations for orientational relaxation along two isobars starting from the high temperature isotropic phase. The isobars have been so chosen that the phase sequence isotropic (I)–nematic (N)–columnar (C) appears upon cooling along one of them and the sequence isotropic (I)–columnar(C) along the other. While the orientational relaxation in the isotropic phase near the I–N phase transition shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I–C phase boundary. The origin of the power law decay in the single-particle second-rank orientational time correlation function (OTCF) is traced to the growth of the orientational pair distribution functions near the I–N phase boundary. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational OTCF follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.
Resumo:
In-filled and Ge-doped Co4Sb12 skutterudites materials were synthesized by an induction melting process which was followed by annealing at 650 degrees C for 7 days. A structural, compositional, and morphological study was carried out by X-ray diffraction (XRD), electron probe micro analysis (EPMA), and scanning electron microscopy (SEM). The formation of a single skutterudite phase (delta-CoSb3) was confirmed by XRD and the composition of all the samples was verified by EPMA. The homogeneity and morphology of the samples was observed by potential Seebeck microprobe (PSM) and SEM, respectively. The PSM result confirmed the inhomogeneity of the samples. The temperature dependence of the Seebeck coefficient, electrical conductivity, and thermal conductivity were measured in the temperature range of 300-650 K. The samples of In0.16Co4Sb12-xGex (x = 0.05, 0.1, and 0.2) show a negative Seebeck coefficient confirming an n-type conductivity and the In0.16Co4Sb11.7Ge0.3 sample shows a positive Seebeck coefficient confirming a p-type conductivity. There was a change in the Seebeck coefficient from an n-type to a p-type at the doping concentration of x = 0.3 due to the excess Ge which increases in hole carrier concentration. Electrical conductivity decreases with an increase in Ge doping concentrations and with increases in temperature due to the bipolar effect. Thermal conductivity increases with an increase in carrier concentration and decreases when the temperature is increased. The highest ZT = 0.58 was achieved by In0.16Co4 Sb11.95Ge0.05 at 673K and In-filled and Ge-doped Co4Sb12 was not effective in improving the figure of merit. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677982]
Resumo:
Fabrication of 0.65Pb(Mg1/3Nb2./3)O-3-0.35PbTiO(3) (PMN-PT) nanoparticles with an average size of about 40 nm and their phase transformation behavior from pyrochlore to perovskite phase is investigated. A novel sol-gel method was used for the synthesis of air-stable and precipitate-free diol-based sol of PMN-PT which was dried and partially calcined at 450 degrees C for 1 h to decompose organics and bring down the free energy barrier for perovskite crystallization and then finally annealed in the temperature range 600 to 700 degrees C. Annealed at around 700 degrees C for 1 h, PMN-PT gel powder exhibited nanocrystalline morphology with perovskite phase as confirmed by the transmission electron microscopy and X-ray diffraction techniques. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3677974]
Resumo:
A single-stage plasma-catalytic reactor in which catalytic materials were packed was used to remove nitrogen oxides. The packing material was scoria being made of various metal oxides including Al2O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °C to 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside the reactor, the NOx removal efficiency could be increased to 60% in this temperature range.
Resumo:
Pyrochlore phase free [Pb0.94Sr0.06] [(Mn1/3Sb2/3)(0.05)(Zr0.53Ti0.47)(0.95)] O-3 ceramics has been synthesized with pure Perovskite phase by semi-wet route using the columbite precursor method. The field dependences of the dielectric response and the conductivity have been measured in a frequency range from 50 Hz to 1 MHz and in a temperature range from 303 K to 773 K. An analysis of the real and imaginary parts of the dielectric permittivity with frequency has been performed, assuming a distribution of relaxation times. The scaling behavior of the dielectric loss spectra suggests that the distribution of the relaxation times is temperature independent. The SEM photographs of the sintered specimens present the homogenous structures and well-grown grains with a sharp grain boundary. The material exhibits tetragonal structure. When measured at frequency (100 Hz), the polarization shows a strong field dependence. Different piezoelectric figures of merit (k(p), d(33) and Q(m)) of the material have also been measured obtaining their values as 0.53, 271 pC/N and 1115, respectively, which are even higher than those of pure PZT with morphotropic phase boundary (MPB) composition. Thus the present ceramics have the optimal overall performance and are promising candidates for the various high power piezoelectric applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with preparation of nanocomposites using modified nanoclay (organoclay) and polypropylene (PP), with, and without compatibilizer (m-TMI-g-PP) to study the effects of modified nanoclay and compatibilizer on viscoelastic properties. Nanocomposites were prepared in two steps; compounding of master batch of nanoclay, polypropylene and m-TMI-g-PP in a torque rheometer and blending of this master-batch with polypropylene in a twin-screw extruder in the specific proportions to yield 3-9% nanoclay by weight in the composite. Dynamic Mechanical Analysis (DMA) tests were carried out to investigate the viscoelastic behavior of virgin polypropylene and nanocomposites. The dynamic mechanical properties such as storage modulus (E'), loss modulus (E `') and damping coefficient (tand) of PP and nano-composites were investigated with and without compatibilizer in the temperature range of -40 degrees C to 140 degrees C at a step of 5 degrees C and frequency range of 5 Hz to 100 Hz at a step of 10 Hz. Storage modulus and loss modulus of the nano-composites was significantly higher than virgin polypropylene throughout the temperature range. Storage modulus of the composites increased continuously with increasing nano-content from 3% to 9%. Composites prepared with compatibilizer exhibited inferior storage modulus than the composites without compatibilizer. Surface morphology such as dispersion of nanoclay in the composites with and without compatibilizer was analyzed through Atomic Force Microscope (AFM) that explained the differences in viscoelastic behavior of composites. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A hydrothermal reaction of cobalt nitrate, 4,4'-oxybis(benzoic acid) (OBA), 1,2,4-triazole, and NaOH gave rise to a deep purple colored compound Co-4(triazolate)(2)(OBA)(3)], I, possessing Co-4 clusters. The Co-4 clusters are connected together through the tirazolate moieties forming a two-dimensional layer that closely resembles the TiS2 layer. The layers are pillared by the OBA units forming the three-dimensional structure. To the best of our knowledge, this is the first observation of a pillared TiS2 layer in a metal-organic framework compound. Magnetic studies in the temperature range 1.8-300 K indicate strong antiferromagetic interactions for Co-4 clusters. The structure as well as the magnetic behavior of the present compound has been compared with the previously reported related compound Co-2(mu 3-OH)(mu(2)-H2O)(pyrazine)(OBA)(OBAH)] prepared using pyrazine as the linker between the Co-4 clusters.
Resumo:
CuFe2O4 nanograins have been prepared by the chemical co-precipitation technique and calcined in the temperature range of 200-1200 degrees C for 3 h. A wide range of grain sizes has been observed in this sintering temperature range, which has been determined to be 4 to 56 nm. Formation of ferrite has also been confirmed by FTIR measurement through the presence of wide band near 600 and 430 cm(-1) for the samples in the as-dried condition. Systematic variation of wave number has been observed with the variation of the calcination temperature. B-H loops exhibit transition from superparamagnetic to ferrimagnetic state above the calcination temperature of 900 degrees C. Coercivity of the samples at lower calcination temperature of 900 degrees C reduces significantly and tends towards zero coercivity, which is suggestive of superparamagnetic transition for the samples sintered below this temperature. Frequency spectrum of the real and imaginary part of complex initial permeability have been measured for the samples calcined at different temperature, which shows wide range of frequency stability. Curie temperature, T-c has been measured from temperature dependence initial permeability at a fixed frequency of 100 kHz. Although there is small variation of T-c with sintering temperature, the reduction of permeability with temperature drastically reduce for lower sintering temperature, which is in conformity with the change of B-H loops with the variation of sintering temperatures.
Resumo:
Electrical conductivity and Seebeck coefficient of calcium-doped YFeO3, a potential cathode material in solid oxide fuel cells (SOFC), are measured as function of temperature and composition in air to resolve conflicts in the literature both on the nature of conduction (n- or p-type) and the types of defects (majority and the minority) present. Compositions of Y1-xCaxFeO3-delta with x = 0.0, 0.025, 0.05 and 0.1 are studied in the temperature range from 625 to 1250 K. All Y1-xCaxFeO3-delta samples show p-type semiconducting behaviour. Addition of Ca up to 5% dramatically increases the conductivity of YFeO3; increase is more gradual up to 10%. A second phase Ca2Fe2O5 appears in the microstructure for Ca concentrations in excess of 11%.
Resumo:
In the present work, the ultrasonic strain sensing performance of the large area PVDF thin film subjected to the thermal fatigue is studied. The PVDF thin film is prepared using hot press and the piezoelectric phase (beta-phase) has been achieved by thermo-mechanical treatment and poling under DC field. The sensors used in aircrafts for structural health monitoring applications are likely to be subjected to a wide range of temperature fluctuations which may create thermal fatigue in both aircraft structures and in the sensors. Thus, the sensitivity of the PVDF sensors for thermal fatigue needs to be studied for its effective implementation in the structural health monitoring applications. In present work, the fabricated films have been subjected to certain number of thermal cycles which serve as thermal fatigue and are further tested for ultrasonic strain sensitivity at various different frequencies. The PVDF sensor is bonded on the beam specimen at one end and the ultrasonic guided waves are launched with a piezoelectric wafer bonded on another end of the beam. Sensitivity of PVDF sensor in terms of voltage is obtained for increasing number of thermal cycles. Sensitivity variation is studied at various different extent of thermal fatigue. The variation of the sensor sensitivity with frequency due to thermal fatigue at different temperatures is also investigated. The present investigation shows an appropriate temperature range for the application of the PVDF sensors in structural health monitoring.
Resumo:
Four new three-dimensional Mn2+ ion-containing compounds have been prepared by employing a hydrothermal reaction between Mn(CH3COO)(2)center dot 4H(2)O, sulfodibenzoic acid (H(2)SDBA), imidazole, alkali hydroxide and water at 220 degrees C for 1 day. The compounds have Mn-5 (1-4) clusters connected by SDBA, forming the three-dimensional structure. A time and temperature dependent study on the synthesis mixture revealed the formation of a one-dimensional compound, Mn(SDBA)(H2O)(2), at lower temperatures (T <= 180 degrees C). The stabilization of the fcu related topology in the compounds is noteworthy. Magnetic studies indicate strong anti-ferromagnetic interactions between the Mn2+ ions within the clusters in the temperature range 75-300 K. The rare participation of a sulfonyl group in the bonding is important and can pave way for the design of new structures.
Resumo:
The quaternary oxide in the system Al2O3-CaO-TiO2 is found to have the composition Ca3Ti8Al12O37 rather than CaTi3Al8O19 as reported in the literature. The standard Gibbs energy of formation of Ca3Ti8Al12O37 from component binary oxides is measured in the temperature range from 900 to 1250 K using a solid-state electrochemical cell incorporating single crystal CaF2 as the solid electrolyte. The results can be represented by the equation: delta G(f(0x))(0) (+/- 70)/J mol(-1) = -248474 - 15.706(T/K). Combining this information with thermodynamic data on calcium aluminates and titanates available in the literature, subsolidus phase relations in the pseudo-ternary system Al2O3-CaO-TiO2 are computed and presented as isothermal sections. The evolution of phase relations with temperature is highlighted. Chemical potential diagrams are computed at 1200 K, showing the stability domains of the various phases in the chemical potential-composition space. In each chemical potential diagram, chemical potential of one component is plotted against the cationic fraction of the other two components. The diagrams are valid at relatively high oxygen potentials where Ti is present in its four-valent state in all the oxide phases.