433 resultados para Photonic crystal fibers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

2-Phenylthiazolin-5-one (5, a thioazlactone) condenses with various aldehydes in the presence of the mild base Mn(II) acetate as catalyst in CH2Cl2 solution. This leads to the corresponding Erlenmeyer reaction products (6) in excellent yields in the case of aromatic aldehydes and moderate yields in others. The mildness of the reaction conditions is apparently enabled by the aromaticity of the (putative) intermediate thiazolone anion. The structure and stereochemistry (Z) of the product derived from i-BuCHO was confirmed by single crystal X-ray diffraction. This study overcomes key limitations of the classical Erlenmeyer synthesis and also introduces the relatively nontoxic Mn(II) acetate as a reagent in heterocyclic chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report inelastic light scattering experiments on superconductor Ce0.6Y0.4FeAsO0.8F0.2 from 4K to 300K covering the superconducting transition temperature T-c similar to 48.6K. A strong evidence of the superconductivity induced phonon renormalization for the A(1g) phonon mode near 150cm(-1) associated with the Ce/Y vibrations is observed as reflected in the anomalous red-shift and decrease in the linewidth below T-c. Invoking the coupling of this mode with the superconducting gap, the superconducting gap (2 Delta) at zero temperature is estimated to be similar to 20meV i.e the ratio 2 Delta(0)/k(B)T(c) is similar to 5, suggesting Ce0.6Y0.4FeAsO0.8F0.2 to belong to the class of strong coupling superconductors. In addition, the mode near 430cm(-1) associated with Ce3+ crystal field excitation also shows anomalous increase in its linewidth below T-c suggesting strong coupling between crystal field excitation and the superconducting quasi-particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline titania are a robust candidate for various functional applications owing to its non-toxicity, cheap availability, ease of preparation and exceptional photochemical as well as thermal stability. The uniqueness in each lattice structure of titania leads to multifaceted physico-chemical and opto-electronic properties, which yield different functionalities and thus influence their performances in various green energy applications. The high temperature treatment for crystallizing titania triggers inevitable particle growth and the destruction of delicate nanostructural features. Thus, the preparation of crystalline titania with tunable phase/particle size/morphology at low to moderate temperatures using a solution-based approach has paved the way for further exciting areas of research. In this focused review, titania synthesis from hydrothermal/solvothermal method, conventional sol-gel method and sol-gel-assisted method via ultrasonication, photoillumination and ILs, thermolysis and microemulsion routes are discussed. These wet chemical methods have broader visibility, since multiple reaction parameters, such as precursor chemistry, surfactants, chelating agents, solvents, mineralizer, pH of the solution, aging time, reaction temperature/time, inorganic electrolytes, can be easily manipulated to tune the final physical structure. This review sheds light on the stabilization/phase transformation pathways of titania polymorphs like anatase, rutile, brookite and TiO2(B) under a variety of reaction conditions. The driving force for crystallization arising from complex species in solution coupled with pH of the solution and ion species facilitating the orientation of octahedral resulting in a crystalline phase are reviewed in detail. In addition to titanium halide/alkoxide, the nucleation of titania from other precursors like peroxo and layered titanates are also discussed. The nonaqueous route and ball milling-induced titania transformation is briefly outlined; moreover, the lacunae in understanding the concepts and future prospects in this exciting field are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structures of a series of isomers of chlorofluorobenzene, bromofluorobenzene and iodofluorobenzene, all of which are liquids under ambient conditions, are determined by a technique of in situ cryocrystallography. These simple dihalo substituted benzenes provide clear insights into subtle interplay of packing interactions preferred by fluorine and heavier halogens for example, C-H center dot center dot center dot X hydrogen bonds vs. X center dot center dot center dot X halogen bonds (X=F, Cl, Br, I). The interaction patterns noted here are purely characteristic of halogens, having not been influenced by other stronger interactions. Variability of principal supramolecular synthons among the isomers highlights the importance of molecular shape and relative position of interacting atoms while preserving the basic intermolecular bonds. Mutually exclusive occurrence of homo (I center dot center dot center dot I) and hetero (I center dot center dot center dot F) halogen bonds in polymorphs of 4-iodofluorobenzene questions the robustness and reliability of these interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystals of Boc-gamma y(4)(R)Val-Val-OH undergo a reversible first-order single crystal to single crystal phase transition at T-c approximate to 205 K from the orthorhombic space group P22(1)2(1) (Z' = 1) to the monoclinic space group P2(1) (Z' = 2) with a hysteresis of similar to 2.1 K. The low-temperature monoclinic form is best described as a nonmerohedral twin with similar to 50% contributions from its two components. The thermal behavior of the dipeptide crystals was characterized by differential scanning calorimetry experiments. Visual changes in birefringence of the sample during heating and cooling cycles on a hot-stage microscope with polarized light supported the phase transition. Variable-temperature unit cell check measurements from 300 to 100 K showed discontinuity in the volume and cell parameters near the transition temperature, supporting the first-order behavior. A detailed comparison of the room-temperature orthorhombic form with the low-temperature (100 K) monoclinic form revealed that the strong hydrogen-bonding motif is retained in both crystal systems, whereas the non-covalent interactions involving side chains of the dipeptide differ significantly, leading to a small change in molecular conformation in the monoclinic form as well as a small reorientation of the molecules along the ac plane. A rigid-body thermal motion analysis (translation, libration, screw; correlation of translation and libration) was performed to study the crystal entropy. The reversible nature of the phase transition is probably the result of an interplay between enthalpy and entropy: the low-temperature monoclinic form is enthalpically favored, whereas the room-temperature orthorhombic form is entropically favored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solvothermal reaction of CoCl(2)4H(2)O and 4,4-sulfonyldibenzoic acid (H(2)SDBA) resulted in the formation of a three-dimensional coordination polymer Co-3(C14H8O6S)(3)(DMA)(2)(MeOH)].DMA (Ia) consisting of trinuclear Co-3 oxo-cluster units. The Co-3 trimeric units are connected by SDBA(2-) anions leading to a three dimensional structure with a pcu topology. The terminal methanol molecules could be exchanged in a single crystal to single crystal (SCSC) fashion by other similar solvent molecules (ethanol, acetonitrile, water, ethyleneglycol). Magnetic studies on the parent compound, Ia, indicate antiferromagnetic interactions between the central metal atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large number of crystal forms, polymorphs and pseudopolymorphs, have been isolated in the phloroglucinol-dipyridylethylene (PGL:DPE) and phloroglucinol-phenazine (PGL:PHE) systems. An understanding of the intermolecular interactions and synthon preferences in these binary systems enables one to design a ternary molecular solid that consists of PGL, PHE, and DPE, and also others where DPE is replaced by other heterocycles. Clean isolation of these ternary cocrystals demonstrates synthon amplification during crystallization. These results point to the lesser likelihood of polymorphism in multicomponent crystals compared to single-component crystals. The appearance of several crystal forms during crystallization of a multicomponent system can be viewed as combinatorial crystal synthesis with synthon selection from a solution library. The resulting polymorphs and pseudopolymorphs that are obtained constitute a crystal structure landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Materials with widely varying molecular topologies and exhibiting liquid crystalline properties have attracted considerable attention in recent years. C-13 NMR spectroscopy is a convenient method for studying such novel systems. In this approach the assignment of the spectrum is the first step which is a non-trivial problem. Towards this end, we propose here a method that enables the carbon skeleton of the different sub-units of the molecule to be traced unambiguously. The proposed method uses a heteronuclear correlation experiment to detect pairs of nearby carbons with attached protons in the liquid crystalline core through correlation of the carbon chemical shifts to the double-quantum coherences of protons generated through the dipolar coupling between them. Supplemented by experiments that identify non-protonated carbons, the method leads to a complete assignment of the spectrum. We initially apply this method for assigning the C-13 spectrum of the liquid crystal 4-n-pentyl-4'-cyanobiphenyl oriented in the magnetic field. We then utilize the method to assign the aromatic carbon signals of a thiophene based liquid crystal thereby enabling the local order-parameters of the molecule to be estimated and the mutual orientation of the different sub-units to be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis and application Cu3BiS3 nanorods in infrared photodectection. Cu3BiS3 nano rods were characterized structurally, optically and electrically. The detailed IR photodectection properties in terms of photo response were demonstrated with IA lamp and 1064 nm laser illuminations. The rapid photocurrent time constants followed by the slower components, resulting due to the defect states. The photo detecting properties for different concentrations of nanorods blended with the conjugate polymer devices were demonstrated. Further the photocurrent was enhanced to threefold increase from 3.47 x 10(-7) A to 2.37 x 10(-3) A at 1 V for 10 mg nanorods embedded in the polymer device. Responsivity of hybrid device was enhanced from 0.0158 NW to 102 NW. The detailed trap assisted space charge transport properties were studied considering the different regimes. Hence Cu3BiS3 can be a promising candidate in the nano switchable near IA photodetectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of models for ``metal-enzyme-substrate'' interaction has been a proactive area of research owing to its biological and pharmacological importance. In this regard the ternary copper uracil complex with 1,10-phenanthroline represents metal-enzyme-substrate system for DNA binding enzymes. The synthesis of the complex, followed by slow evaporation of the reaction mixture forms two concomitant solvatomorph crystals viz., {Cu(phen)(mu-ura)(H2O)](n)center dot H2O (1a)} and {Cu(phen)(mu-ura)(H2O)](n)center dot CH3OH (1b)}. Both complexes are structurally characterized, while elemental analysis, IR and EPR spectra were recorded for 1b (major product). In both complexes, uracil coordinates uniquely via N1 and N3 nitrogen atom acting as a bidentate bridging ligand forming a 1-D polymer. The two solvatomorphs were quantitatively analyzed for the differences with the aid of Hirshfeld surface analysis. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hexamethylenetetramine (HMT) framework displays interesting stereoelectronic interactions of the anomeric type. In the highly symmetrical parent system, the nitrogen centres act as both donors and acceptors. Protonation lowers symmetry and also leads to an enhancement of the anomeric interaction around the protonated centre. X-ray diffraction crystal structures of four derivatives of HMT - with succinic, (DL)-malic, phthalic and 4-hydroxybenzoic acids - reveal significant trends. (The first three form well-defined salts, 4-hydroxybenzoic acid forming a co-crystalline compound.) Each molecular structure is essentially characterised by a major anomeric interaction involving the protonated centre as acceptor. In two cases (succinic and 4-hydroxybenzoic), secondary protonation leads to a weaker anomeric interaction site that apparently competes with the dominant one. Bond length changes indicate that the anomeric interaction decreases as malic > phthalic > succinic > 4-hydroxybenzoic, which correlates with the degree of proton transfer to the nitrogen centre. Along with other bond length and angle changes, the results offer insight into the applicability of the antiperiplanar lone pair hypothesis (ALPH) in a rigid system. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hexamethylenetetramine (HMT) framework displays interesting stereoelectronic interactions of the anomeric type. In the highly symmetrical parent system, the nitrogen centres act as both donors and acceptors. Protonation lowers symmetry and also leads to an enhancement of the anomeric interaction around the protonated centre. X-ray diffraction crystal structures of four derivatives of HMT - with succinic, (DL)-malic, phthalic and 4-hydroxybenzoic acids - reveal significant trends. (The first three form well-defined salts, 4-hydroxybenzoic acid forming a co-crystalline compound.) Each molecular structure is essentially characterised by a major anomeric interaction involving the protonated centre as acceptor. In two cases (succinic and 4-hydroxybenzoic), secondary protonation leads to a weaker anomeric interaction site that apparently competes with the dominant one. Bond length changes indicate that the anomeric interaction decreases as malic > phthalic > succinic > 4-hydroxybenzoic, which correlates with the degree of proton transfer to the nitrogen centre. Along with other bond length and angle changes, the results offer insight into the applicability of the antiperiplanar lone pair hypothesis (ALPH) in a rigid system. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforcing soil with fibers is a useful method for improving the strength and settlement response of soil. The soil and fiber characteristics and their interaction are some of the major factors affecting the strength of reinforced soil. The fibers are usually randomly distributed in the soil, and their orientation has a significant effect on the behavior of the reinforced soil. In the paper, a study of the effect of anisotropic distribution of fibers on the stress-strain response is presented. Based on the concept of the modified Cam clay model, an analytical model was formulated for the fiber-reinforced soil, and the effect of fiber orientation on the stress-strain behavior of soil was studied in detail. The results show that, as the inclination of fibers with the horizontal plane increased, the contribution of fibers in improving the strength of fiber-reinforced soil decreased. The effect of fibers is maximum when they are in the direction of extension, and vice versa. (C) 2014 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure landscape of the 2:1 benzoic acid:dipyridylethylene cocrystal (BA:DPE-I) is explored experimentally with fluoro-substituted benzoic acids and extended with studies employing the Cambridge Structural Database (CSD). The interpretation of the cocrystal landscape is facilitated by considering the kinetically favored and robust acidpyridine heterosynthon as a modular unit. Information based on high-throughput crystallography shows that polymorphs and pseudopolymorphs may belong to the same landscape but arise from different crystallization pathways because of complex and different kinetic features, and secondary synthon preferences. Using the CSD as a guide, the coformer was changed from 1,2-bis(4-pyridyl)ethylene (DPE-I) to 1,2-bis(4-pyridyl)ethane (DPE-II) and this provides an extended interpretation of the BA:DPE-I cocrystal landscape, also highlighting the complexity of the kineticthermodynamic dichotomy during the molecule-to-crystal progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis of the heterobinuclear copper-zinc complex CuZn(bz)(3)(bpy)(2)]ClO4 (bz = benzoate) from benzoic acid and bipyridine is described. Single crystal X-ray diffraction studies of the heterobinuclear complex reveals the geometry of the benzoato bridged Cu(II)-Zn(II) centre. The copper or zinc atom is pentacoordinate, with two oxygen atoms from bridging benzoato groups and two nitrogen atoms from one bipyridine forming an approximate plane and a bridging oxygen atom from a monodentate benzoate group. The Cu-Zn distance is 3.345 angstrom. The complex is normal paramagnetic having mu(eff) value equal to 1.75 BM, ruling out the possibility of Cu-Cu interaction in the structural unit. The ESR spectrum of the complex in CH3CN at RT exhibit an isotropic four line spectrum centred at g = 2.142 and hyperfine coupling constants A(av) = 63 x 10(-4) cm(-1), characteristic of a mononuclear square-pyramidal copper(II) complexes. At LNT, the complex shows an isotropic spectrum with g(parallel to) = 2.254 and g(perpendicular to) =2.071 and A(parallel to) = 160 x 10(-4) cm(-1). The Hamiltonian parameters are characteristic of distorted square pyramidal geometry. Cyclic voltammetric studies of the complex have indicated quasi-reversible behaviour in acetonitrile solution. (C) 2014 Elsevier B.V. All rights reserved.