425 resultados para Constant pressure sprayer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diaphragm thickness and the corresponding piezoresistor locations change due to over or under etching in bulk micromachined piezoresistive pressure sensor which intern influences the device performance. In the present work, variation of sensitivity and nonlinearity of a micro electro mechanical system low pressure sensor is investigated. The sensor is modeled using finite element method to analyze the variation of sensitivity and nonlinearity with diaphragm thickness. To verify the simulated results, the sensors with different diaphragm thicknesses are fabricated. The models are verified by comparing the calculated results with experimental data. This study is potentially useful for the researchers as most of the times the diaphragm is either over-etched or under-etched due to inherent variation in wafer thickness and involving manual operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe0.05Co0.95Sb2.875Te0.125, a double-element-substituted skutterudite, was prepared by induction melting, annealing, and hot pressing (HP). The hot-pressed sample was subjected to high-pressure torsion (HPT) with 4 GPa pressure at 673 K. X-ray diffraction was performed before and after HPT processing of the sample; the skutterudite phase was observed as a main phase, but an additional impurity phase (CoSb2) was observed in the HPT-processed sample. Surface morphology was determined by high-resolution scanning electron microscopy. In the HP sample, coarse grains with sizes in the range of approximately 100 nm to 300 nm were obtained. They changed to fine grains with a reduction in grain size to 75 nm to 125 nm after HPT due to severe plastic deformation. Crystallographic texture, as measured by x-ray diffraction, indicated strengthening of (112), (102) poles and weakening of the (123) pole of the HPT-processed sample. Raman-active vibrational modes showed a peak position shift towards the lower energy side, indicating softening of the modes after HPT. The distortion of the rectangular Sb-Sb rings leads to broadening of Sb-Sb vibrational modes due to local strain fluctuation. In the HPT process, a significant effect on the shorter Sb-Sb bond was observed as compared with the longer Sb-Sb bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temperature of allotropic phase transformation in ZnS (cubic to wurtzite) changes with pressure and particle size. In this paper we have explored the interrelation among these through a detailed study of ZnS powders obtained by a temperature-controlled high energy milling process. By employing the combined effect of temperature and pressure in an indigenously built cryomill, we have demonstrated a large-scale, low-temperature synthesis of wurtzite ZnS nanoparticles. The synthesized products have been characterized for their phase and microstructure by the use of X-ray diffraction and transmission electron microscopic techniques. Further, it has been demonstrated that the synthesized materials exhibit photoluminescence emissions in the UV-visible region with an unusual doublet pattern due to the presence of both cubic and hexagonal wurtzite domains in the same particles. By further fine-tuning the processing conditions, it may be possible to achieve controlled defect related photoluminescence emissions from the ZnS nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers linear precoding for the constant channel-coefficient K-user MIMO Gaussian interference channel (MIMO GIC) where each transmitter-i (Tx-i) requires the sending of d(i) independent complex symbols per channel use that take values from fixed finite constellations with uniform distribution to receiver-i (Rx-i) for i = 1, 2, ..., K. We define the maximum rate achieved by Tx-i using any linear precoder as the signal-to-noise ratio (SNR) tends to infinity when the interference channel coefficients are zero to be the constellation constrained saturation capacity (CCSC) for Tx-i. We derive a high-SNR approximation for the rate achieved by Tx-i when interference is treated as noise and this rate is given by the mutual information between Tx-i and Rx-i, denoted as I(X) under bar (i); (Y) under bar (i)]. A set of necessary and sufficient conditions on the precoders under which I(X) under bar (i); (Y) under bar (i)] tends to CCSC for Tx-i is derived. Interestingly, the precoders designed for interference alignment (IA) satisfy these necessary and sufficient conditions. Furthermore, we propose gradient-ascentbased algorithms to optimize the sum rate achieved by precoding with finite constellation inputs and treating interference as noise. A simulation study using the proposed algorithms for a three-user MIMO GIC with two antennas at each node with d(i) = 1 for all i and with BPSK and QPSK inputs shows more than 0.1-b/s/Hz gain in the ergodic sum rate over that yielded by precoders obtained from some known IA algorithms at moderate SNRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Injection of liquid fuel in cross flowing air has been a strategy for future aircraft engines in order to control the emissions. In this context, breakup of a pressure swirl spray in gaseous cross-flow is investigated experimentally. The atomizer discharges a conical swirling sheet of liquid that interacts with cross-flowing air. This complex interaction and the resulting spray structures at various flow conditions are studied through flow visualization using still as well as high speed photography. Experiments are performed over a wide range of aerodynamic Weber number (2-300) and liquid-to-air momentum flux ratio (5-150). Various breakup regimes exhibiting different breakup processes are mapped on a parameter space based on flow conditions. This map shows significant variations from breakup regime map for a plain liquid jet in cross-flow. It is observed that the breakup of leeward side of the sheet is dominated by bag breakup and the windward side of the sheet undergoes breakup through surface waves. Similarities and differences between bag breakup present in plain liquid jet in cross-flow and swirl spray in cross-flow are explained. Multimodal drop size distribution from bag breakup, frequency of bag breakup, wavelength of surface waves and trajectory of spray in cross-flow are measured by analyzing the spray images and parametric study of their variations is also presented. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The variation of electrical resistivity in the system of glasses Ge17Te83-xTlx, with (1 <= x <= 13), has been studied as a function of high pressure for pressures up to 10 GPa. It is found that the normalized electrical resistivity decreases continuously with the increase in pressure and shows a sudden drop at a particular pressure (transition pressure), indicating the presence of a transition from semiconductor to near-metallic at these pressures which are in the range 3.0-5.0 GPa. This transition pressure is seen to decrease with the increase in the percentage content of thallium due to increasing metallicity of the thallium. The transition is reversible under application of pressure and X-ray diffraction of samples recovered after pressurization show that they remain amorphous after undergoing a pressurization decompression cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of the diffusion energy barrier for Li in electrodes is one of the required criteria to achieve better performances in Li ion batteries. Using density functional theory based calculations, we report a pressure induced manifold enhancement of Li-kinetics in bulk FCC fullerene. Scanning of the potential energy surface reveals a diffusion path with a low energy barrier of 0.62 eV, which reduces further under the application of hydrostatic pressure. The pressure induced reduction in the diffusion barrier continues till a uniform volume strain of 17.7% is reached. Further enhancement of strain increases the barrier due to the repulsion caused by C-C bond formation between two neighbouring fullerenes. The decrease in the barrier is attributed to the combined effect of charge transfer triggered by the enhanced interaction of Li with the fullerene as well as the change in profile of the local potential, which becomes more attractive for Li. The lowering of the barrier leads to an enhancement of two orders of magnitude in Li diffusivity at room temperature making pressurized bulk fullerene a promising artificial solid electrolyte interface (SEI) for a faster rechargeable battery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boxicity (resp. cubicity) of a graph G(V, E) is the minimum integer k such that G can be represented as the intersection graph of axis parallel boxes (resp. cubes) in R-k. Equivalently, it is the minimum number of interval graphs (resp. unit interval graphs) on the vertex set V, such that the intersection of their edge sets is E. The problem of computing boxicity (resp. cubicity) is known to be inapproximable, even for restricted graph classes like bipartite, co-bipartite and split graphs, within an O(n(1-epsilon))-factor for any epsilon > 0 in polynomial time, unless NP = ZPP. For any well known graph class of unbounded boxicity, there is no known approximation algorithm that gives n(1-epsilon)-factor approximation algorithm for computing boxicity in polynomial time, for any epsilon > 0. In this paper, we consider the problem of approximating the boxicity (cubicity) of circular arc graphs intersection graphs of arcs of a circle. Circular arc graphs are known to have unbounded boxicity, which could be as large as Omega(n). We give a (2 + 1/k) -factor (resp. (2 + log n]/k)-factor) polynomial time approximation algorithm for computing the boxicity (resp. cubicity) of any circular arc graph, where k >= 1 is the value of the optimum solution. For normal circular arc (NCA) graphs, with an NCA model given, this can be improved to an additive two approximation algorithm. The time complexity of the algorithms to approximately compute the boxicity (resp. cubicity) is O(mn + n(2)) in both these cases, and in O(mn + kn(2)) = O(n(3)) time we also get their corresponding box (resp. cube) representations, where n is the number of vertices of the graph and m is its number of edges. Our additive two approximation algorithm directly works for any proper circular arc graph, since their NCA models can be computed in polynomial time. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The static and dynamic pressure concentration isotherms (PCIs) of MmNi(5-x)Al(x). (x = 0, 0.3, 0.5 and 0.8) hydrides were measured at different temperatures using volumetric method. The effect of Al substitution on PCI and thermodynamic properties were studied. The plateau pressure and maximum hydrogen storage capacity decreased with Al content whereas reaction enthalpy increased. The plateau pressure, plateau slope and hysteresis effect was observed more for dynamic PCIs compared to static PCIs. Different mathematical models used for metal hydride-based thermodynamic devices simulation are compared to select suitable model for static and dynamic PCI simulation of MmNi(5)-based hydrides. Few important physical coefficients (partial molar volume, reaction enthalpy, reaction entropy, etc.) useful for development of thermodynamic devices were estimated. A relation has been proposed to correlate aluminium content and physical coefficients for the prediction of unknown PCI. The simulated and experimental PCIs were found matching closely for both static and dynamic conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current organic semiconductors for organic photovoltaics (OPV) have relative dielectric constants (relative permittivities, epsilon(r)) in the range of 2-4. As a consequence, Coulombically bound electron-hole pairs (excitons) are produced upon absorption of light, giving rise to limited power conversion efficiencies. We introduce a strategy to enhance epsilon(r) of well-known donors and acceptors without breaking conjugation, degrading charge carrier mobility or altering the transport gap. The ability of ethylene glycol (EG) repeating units to rapidly reorient their dipoles with the charge redistributions in the environment was proven via density functional theory (DFT) calculations. Fullerene derivatives functionalized with triethylene glycol side chains were studied for the enhancement of epsilon(r) together with poly(p-phenylene vinylene) and diketo-pyrrolopyrrole based polymers functionalized with similar side chains. The polymers showed a doubling of epsilon(r) with respect to their reference polymers in identical backbone. Fullerene derivatives presented enhancements up to 6 compared with phenyl-C-61-butyric acid methyl ester (PCBM) as the reference. Importantly, the applied modifications did not affect the mobility of electrons and holes and provided excellent solubility in common organic solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robotic surgical tools used in minimally invasive surgeries (MIS) require miniaturized and reliable actuators for precise positioning and control of the end-effector. Miniature pneumatic artificial muscles (MPAMs) are a good choice due to their inert nature, high force to weight ratio, and fast actuation. In this paper, we present the development of miniaturized braided pneumatic muscles with an outer diameter of similar to 1.2 mm, a high contraction ratio of about 18%, and capable of providing a pull force in excess of 4 N at a supply pressure of 0.8 MPa. We present the details of the developed experimental setup, experimental data on contraction and force as a function of applied pressure, and characterization of the MPAM. We also present a simple kinematics and experimental data based model of the braided pneumatic muscle and show that the model predicts contraction in length to within 20% of the measured value. Finally, a robust controller for the MPAMs is developed and validated with experiments and it is shown that the MPAMs have a time constant of similar to 10 ms thereby making them suitable for actuating endoscopic and robotic surgical tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systematic experiments have been carried out by monitoring the in-situ pressure and thickness profiles for three different configurations, viz., flat plate, flat plate with a central circular hole, and an L-section using vacuum assisted resin transfer molding (VARTM) process. The effect of anisotropy on resin flow has been quantified by considering uni-directional carbon fiber preforms with 0 degrees and 90 degrees orientation to the flow direction for each configuration. A quasi-isotropic 45 degrees/0 degrees/-45 degrees/90 degrees](S) layup has also been included for flat plate case. Additionally, the study has been extended to understand the effect of using high permeability medium for each configuration. Fluid pressure profiles and thickness variation profiles have been obtained using an array of pressure sensors and linear variable differential transformers for each configuration. Experimental data reveal that anisotropy (due to changing fiber orientations), configuration, and gravity significantly change fluid pressure and displacement fields obtained during VARTM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T') and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structureproperty relation due to the rich band structure of MoS2. Remarkably, the metastable 1T'-MoS2 metallic state remains invariant with pressure, with the J(2), A(1g), and E(2)g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dilution cum purge ejector for application in fuel cells represents a domain of ejector operation involving low entrainment ratio with differing secondary and primary gas; which is hardly investigated and a cohesive design framework is not readily available. We comprehensively study a constant area ejector using analytical, experimental and numerical tools at low entrainment ratio (0.004-0.065) with Air, Helium and Argon as secondary gas while the primary gas is Air. For the first time, limits of operating parameters used in control volume method to design the ejector are found to be highly dependent on the secondary molecular weight. The entrainment ratio in the ejector (low for Helium and high for Argon) is affected by the molecular weight and the static pressure within the ejector (low for Air and high for Argon & Helium) by the gamma of the secondary gas. Sufficient suction pressure (0.3-0.55 bar) is generated by the ejector thereby preventing any backflow of secondary gas at all primary stagnation pressures (1.5, 2.2 and 3.1 bar). Numerical results agree well with experimental results. The ejector is shown to completely dilute and purge the secondary flow, meeting all key design requirements. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper critically analyzes, for the first time, the effect of nanofluid on thermally fully developed magnetohydrodynamic flows through microchannel, by considering combined effects of externally applied pressure gradient and electroosmosis. The classical boundary condition of uniform wall heat flux is considered, and the effects of viscous dissipation as well as Joule heating have been taken into account. Closed-form analytical expressions for the pertinent velocity and temperature distributions and the Nusselt number variations are obtained, in order to examine the role of nanofluids in influencing the fully developed thermal transport in electroosmotic microflows under the effect of magnetic field. Fundamental considerations are invoked to ascertain the consequences of particle agglomeration on the thermophysical properties of the nanofluid. The present theoretical formalism addresses the details of the interparticle interaction kinetics in tune with the pertinent variations in the effective particulate dimensions, volume fractions of the nanoparticles, as well as the aggregate structure of the particulate system. It is revealed that the inclusion of nanofluid changes the transport characteristics and system irreversibility to a considerable extent and can have significant consequences in the design of electroosmotically actuated microfluidic systems.