402 resultados para ALGEBRAICALLY CLOSED FIELD
Resumo:
Approximate Nearest Neighbour Field maps are commonly used by computer vision and graphics community to deal with problems like image completion, retargetting, denoising, etc. In this paper, we extend the scope of usage of ANNF maps to medical image analysis, more specifically to optic disk detection in retinal images. In the analysis of retinal images, optic disk detection plays an important role since it simplifies the segmentation of optic disk and other retinal structures. The proposed approach uses FeatureMatch, an ANNF algorithm, to find the correspondence between a chosen optic disk reference image and any given query image. This correspondence provides a distribution of patches in the query image that are closest to patches in the reference image. The likelihood map obtained from the distribution of patches in query image is used for optic disk detection. The proposed approach is evaluated on five publicly available DIARETDB0, DIARETDB1, DRIVE, STARE and MESSIDOR databases, with total of 1540 images. We show, experimentally, that our proposed approach achieves an average detection accuracy of 99% and an average computation time of 0.2 s per image. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The mixed alkali metal effect is a long-standing problem in glasses. Electron paramagnetic resonance (EPR) is used by several researchers to study the mixed alkali metal effect, but a detailed analysis of the nearest neighbor environment of the glass former using spin-Hamiltonian parameters was elusive. In this study we have prepared a series of vanadate glasses having general formula (mol %) 40 V2O5-30BaF(2)-(30 - x)LiF-xRbF with x = 5, 10, 15, 20, 25, and 30. Spin-Hamiltonian parameters of V4+ ions were extracted by simulating and fitting to the experimental spectra using EasySpin. From the analysis of these parameters it is observed that the replacement of lithium ions by rubidium ions follows a ``preferential substitution model''. Using this proposed model, we were able to account for the observed variation in the ratio of the g parameter, which goes through a maximum. This reflects an asymmetric to symmetric changeover of. the alkali metal ion environment around the vanadium site. Further, this model also accounts for the variation in oxidation state of vanadium ion, which was confirmed from the variation in signal intensity of EPR spectra.
Resumo:
We study the performance of a hybrid Graphene-Boron Nitride armchair nanoribbon (a-GNR-BN) n-MOSFET at its ballistic transport limit. We consider three geometric configurations 3p, 3p + 1, and 3p + 2 of a-GNR-BN with BN atoms embedded on either side (2, 4, and 6 BN) on the GNR. Material properties like band gap, effective mass, and density of states of these H-passivated structures are evaluated using the Density Functional Theory. Using these material parameters, self-consistent Poisson-Schrodinger simulations are carried out under the Non Equilibrium Green's Function formalism to calculate the ballistic n-MOSFET device characteristics. For a hybrid nanoribbon of width similar to 5 nm, the simulated ON current is found to be in the range of 265 mu A-280 mu A with an ON/OFF ratio 7.1 x 10(6)-7.4 x 10(6) for a V-DD = 0.68 V corresponding to 10 nm technology node. We further study the impact of randomly distributed Stone Wales (SW) defects in these hybrid structures and only 2.5% degradation of ON current is observed for SW defect density of 3.18%. (C) 2014 AIP Publishing LLC.
Resumo:
Fiber reinforced laminated composite open-section beams are widely used as bearingless rotor flex beams because of their high specific strength and stiffness as well as fatigue life. These laminated composite structures exhibit a number of different failure modes, including fiber-matrix debonding within individual layers, delamination or separation of the layers, transverse cracks through one or more layers and fiber fracture. Delamination is a predominant failure mode in continuous fiber reinforced laminated composites and often initiate near the free edges of the structure. The appearance of delaminations in the composite rotorcraft flexbeams can lead to deterioration of the mechanical properties and, in turn, the helicopter performance as well as safety. Understanding and predicting the influence of free-edge delamination on the overall behavior of the laminates will provide quantitative measures of the extent of the damage and help ensure their damage tolerance.
Resumo:
In this paper, we study the free vibration of axially functionally graded (AFG) Timoshenko beams, with uniform cross-section and having fixed-fixed boundary condition. For certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, there exists a fundamental closed form solution to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of non-homogeneous Timoshenko beams, with various material mass density, elastic modulus and shear modulus distributions having simple polynomial variations, which share the same fundamental frequency. The derived results can be used as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of non-homogeneous Timoshenko beams. They can also be useful for designing fixed-fixed non-homogeneous Timoshenko beams which may be required to vibrate with a particular frequency. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
One of the most promising materials for fabricating cold cathodes for next generation high-performance flat panel devices is carbon nanotubes (CNTs). For this purpose, CNTs grown on metallic substrates are used to minimize contact resistance. In this report, we compare properties and field emission performance of CNTs grown via water assisted chemical vapor deposition using Inconel vs silicon (Si) substrates. Carbon nanotube forests grown on Inconel substrates are superior to the ones grown on silicon; low turn-on fields (similar to 1.5 V/mu m), high current operation (similar to 100 mA/cm(2)) and very high local field amplification factors (up to similar to 7300) were demonstrated, and these parameters are most beneficial for use in vacuum microelectronic applications.
Resumo:
In addressing the issue of prosthetic infection, this work demonstrated the synergistic effect of the application of static magnetic field (SMF) and ferrimagnetic substrate properties on the bactericidal property in vitro. This aspect was studied using hydroxyapatite (HA)-xFe(3)O(4) (x=10, 20, and 40 wt.%) substrates, which have different saturation magnetization properties. During bacteria culture experiments, 100 mT SMF was applied to growth medium (with HA-xFe(3)O(4) substrate) in vitro for 30, 120, and 240 min. A combination of MTT assay, membrane rupture assays, live/dead assay, and fluorescence microscopic analysis showed that the bactericidal effect of SMF increases with the exposure duration as well as increasing Fe3O4 content in biomaterial substrates. Importantly, the synergistic bactericidal effect was found to be independent of bacterial cell type, as similar qualitative trend is measured with both gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus) strains. The reduction in E. coli viability was 83% higher on HA-40 Wt % Fe3O4 composite after 4 h exposure to SMF as compared to nonexposed control. Interestingly, any statistically significant difference in ROS was not observed in bacterial growth medium after magnetic field exposure, indicating the absence of ROS enhancement due to magnetic field. Overall, this study illustrates significant role being played by magnetic substrate compositions towards bactericidal property than by magnetic field exposure alone. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 524-532, 2014.
Resumo:
A droplet introduced in an external convective flow field exhibits significant multimodal shape oscillations depending upon the intensity of the aerodynamic forcing. In this paper, a theoretical model describing the temporal evolution of normal modes of the droplet shape is developed. The fluid is assumed to be weakly viscous and Newtonian. The convective flow velocity, which is assumed to be incompressible and inviscid, is incorporated in the model through the normal stress condition at the droplet surface and the equation of motion governing the dynamics of each mode is derived. The coupling between the external flow and the droplet is approximated to be a one-way process, i.e., the external flow perturbations effect the droplet shape oscillations and the droplet oscillation itself does not influence the external flow characteristics. The shape oscillations of the droplet with different fluid properties under different unsteady flow fields were simulated. For a pulsatile external flow, the frequency spectra of the normal modes of the droplet revealed a dominant response at the resonant frequency, in addition to the driving frequency and the corresponding harmonics. At driving frequencies sufficiently different from the resonant frequency of the prolate-oblate oscillation mode of the droplet, the oscillations are stable. But at resonance the oscillation amplitude grows in time leading to breakup depending upon the fluid viscosity. A line vortex advecting past the droplet, simulated as an isotropic jump in the far field velocity, leads to the resonant excitation of the droplet shape modes if and only if the time taken by the vortex to cross the droplet is less than the resonant period of the P-2 mode of the droplet. A train of two vortices interacting with the droplet is also analysed. It shows clearly that the time instant of introduction of the second vortex with respect to the droplet shape oscillation cycle is crucial in determining the amplitude of oscillation. (C) 2014 AIP Publishing LLC.
Resumo:
We present electrical transport arid low frequency (1/f) noise measurements on mechanically exfoliated single, In and triLayer MoS2-based FPI devices on Si/SiO2 substrate. We find that tie electronic states hi MoS2 are localized at low temperatures (T) and conduction happens through variable range hopping (VRH). A steep increase of 1/f noise with decreasing T, typical for localized regime was observed in all of our devices. From gate voltage dependence of noise, we find that the noise power is inversely proportional to square of the number density (proportional to 1/n(2)) for a wide range of T, indicating number density fluctuations to be the dominant source of 1/f noise in these MoS2 FETs.
Resumo:
In well dispersed multi-wall carbon nanotube-polystyrene composite of 15 wt%, with room temperature conductivity of similar to 5 S/cm and resistivity ratio R-2K/R-200K] of similar to 1.4, the temperature dependence of conductivity follows a power-law behavior. The conductivity increases with magnetic field for a wide range of temperature (2-200 K), and power-law fits to conductivity data show that localization length (xi) increases with magnetic field, resulting in a large negative magnetoresistance (MR). At 50T, the negative MR at 8 K is similar to 13% and it shows a maximum at 90K (similar to 25%). This unusually large negative MR indicates that the field is delocalizing the charge carriers even at higher temperatures, apart from the smaller weak localization contribution at T < 20 K. This field-induced delocalization mechanism of MR can provide insight into the intra and inter tube transport. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Analytical closed-form expressions for harmonic distortion factors corresponding to various pulsewidth modulation (PWM) techniques for a two-level inverter have been reported in the literature. This paper derives such analytical closed-form expressions, pertaining to centered space-vector PWM (CSVPWM) and eight different advanced bus-clamping PWM (ABCPWM) schemes, for a three-level neutral-point-clamped (NPC) inverter. These ABCPWM schemes switch each phase at twice the nominal switching frequency in certain intervals of the line cycle while clamping each phase to one of the dc terminals over certain other intervals. The harmonic spectra of the output voltages, corresponding to the eight ABCPWM schemes, are studied and compared experimentally with that of CSVPWM over the entire modulation range. The measured values of weighted total harmonic distortion (WTHD) of the line voltage V-WTHD are used to validate the analytical closed-form expressions derived. The analytical expressions, pertaining to two of the ABCPWM methods, are also validated by measuring the total harmonic distortion (THD) in the line current I-THD on a 2.2-kW constant volts-per-hertz induction motor drive.
Resumo:
A new technique based on luminescent molecular sensors is utilized in these series of experiments for measurement of temperatures in material removal processes. 2-Dimensional machining of metals at low speeds and surface grinding configurations are used as the model experimental systems to understand the efficacy of this experimental technique. The experiments were conducted with a series of luminescent sensors and binder combinations for the temperature measurement. The luminescence of the sensor was measured through a charge-coupled device imaging camera, and intensive calibration exercises were performed on these sensors. Excellent agreement in the temperature fields measured through this new experimental approach and traditional infrared thermography is seen here. This technique offers the unique capability of allowing measurement of temperatures in the presence of a lubricant, akin to manufacturing conditions in situ. Extension of the technique to measure the temperature field at the tool-chip contact is described.