434 resultados para relaxation
Resumo:
In this study, the dielectric properties of PVA/ZnO nanocomposites films were evaluated. The composites were prepared by a solution casting technique. The dispersion and functionalization of the ZnO nanoparticles in the composite films were characterized by spectroscopic technique. The surface morphology of the PVA/ZnO nanocomposites films were elucidated using AFM. The charge transport properties were evaluated based on the dielectric and impedance spectroscopy techniques. Low ZnO loading composite shows low dielectric value at higher frequency and behaves as a lossless material. The complex impedance spectra suggest the change in conductivity, due to the change in bulk resistance of the materials and less relaxation time. Thus, all PVA/ZnO nanocomposites behave as lossless materials above 10(6) Hz indicating the composites are useful in microwave application. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Low-complexity near-optimal detection of large-MIMO signals has attracted recent research. Recently, we proposed a local neighborhood search algorithm, namely reactive tabu search (RTS) algorithm, as well as a factor-graph based belief propagation (BP) algorithm for low-complexity large-MIMO detection. The motivation for the present work arises from the following two observations on the above two algorithms: i) Although RTS achieved close to optimal performance for 4-QAM in large dimensions, significant performance improvement was still possible for higher-order QAM (e.g., 16-, 64-QAM). ii) BP also achieved near-optimal performance for large dimensions, but only for {±1} alphabet. In this paper, we improve the large-MIMO detection performance of higher-order QAM signals by using a hybrid algorithm that employs RTS and BP. In particular, motivated by the observation that when a detection error occurs at the RTS output, the least significant bits (LSB) of the symbols are mostly in error, we propose to first reconstruct and cancel the interference due to bits other than LSBs at the RTS output and feed the interference cancelled received signal to the BP algorithm to improve the reliability of the LSBs. The output of the BP is then fed back to RTS for the next iteration. Simulation results show that the proposed algorithm performs better than the RTS algorithm, and semi-definite relaxation (SDR) and Gaussian tree approximation (GTA) algorithms.
Resumo:
Polycrystalline Ca0.18Sr0.226Ba0.594Nb2O6 (CSBN18) was synthesized via the solid-state reaction route. X-ray structural studies confirmed it belonged to the tetragonal tungsten bronze family. Rietveld refinement of the X-ray data has been carried out for CSBN18 where the atomic positions and site occupancy factors for A-sites have been determined. The dielectric properties of CSBN18 ceramic were studied as a function of temperature in the 100 Hz - 1 MHz frequency range. The dielectric relaxation followed the Vogel-Fulcher relation wherein E-a = 37.4 meV; T-f = 131.5 degrees C and omega(0) = 4.31 x 10(9) rad s(-1). A high pyroelectric coefficient of similar to 250 mu C m(-2).K was obtained around the transition temperature (similar to 150 degrees C). This is significantly higher than that reported for polycrystalline SrxBa1-xNb2O6 (SBN). However, the piezoelectric coefficient (d(33)) of the title composition was as low as 6 pC N-1.
Resumo:
We report ultrafast quasiparticle (QP) dynamics and coherent acoustic phonons in undoped CaFe2As2 iron pnictide single crystals exhibiting spin-density wave (SDW) and concurrent structural phase transition at temperature T-SDW similar to 165K using femtosecond time-resolved pump-probe spectroscopy. The contributions in transient differential reflectivity arising from exponentially decaying QP relaxation and oscillatory coherent acoustic phonon mode show large variations in the vicinity of T-SDW. From the temperature-dependence of the QP recombination dynamics in the SDW phase, we evaluate a BCS-like temperature dependent charge gap with its zero-temperature value of similar to(1.6 perpendicular to 0.2)k(B)T(SDW), whereas, much above T-SDW, an electron-phonon coupling constant of similar to 0.13 has been estimated from the linear temperature-dependence of the QP relaxation time. The long-wavelength coherent acoustic phonons with typical time-period of similar to 100 ps have been analyzed in the light of propagating strain pulse model providing important results for the optical constants, sounds velocity and the elastic modulus of the crystal in the whole temperature range of 3 to 300 K.
Resumo:
The breakdown of the Stokes-Einstein (SE) relation between diffusivity and viscosity at low temperatures is considered to be one of the hallmarks of glassy dynamics in liquids. Theoretical analyses relate this breakdown with the presence of heterogeneous dynamics, and by extension, with the fragility of glass formers. We perform an investigation of the breakdown of the SE relation in 2, 3, and 4 dimensions in order to understand these interrelations. Results from simulations of model glass formers show that the degree of the breakdown of the SE relation decreases with increasing spatial dimensionality. The breakdown itself can be rationalized via the difference between the activation free energies for diffusivity and viscosity (or relaxation times) in the Adam-Gibbs relation in three and four dimensions. The behavior in two dimensions also can be understood in terms of a generalized Adam-Gibbs relation that is observed in previous work. We calculate various measures of heterogeneity of dynamics and find that the degree of the SE breakdown and measures of heterogeneity of dynamics are generally well correlated but with some exceptions. The two-dimensional systems we study show deviations from the pattern of behavior of the three-and four-dimensional systems both at high and low temperatures. The fragility of the studied liquids is found to increase with spatial dimensionality, contrary to the expectation based on the association of fragility with heterogeneous dynamics.
Resumo:
Bulk Se60-xTe40Sbx glasses in the composition range 0 <= x <= 14 were prepared by the melt quenching method. Differential Scanning Calorimetric (DSC) and thermal crystallization studies were performed to understand the thermodynamic property like glass transition and structural transformations. These glasses exhibit sharp endothermic peak at the glass transition (T-g). Disappearance of the endothermic peak at T-g in the rejuvenated samples clearly indicates the ageing effect in these glasses. Addition of Sb to Se-Te increases the connectivity of the structural network which is evidenced from the increase in T-g. A distinct change in the slope of the T-g at x=6, indicates a major change in the way the network is connected. The glass forming ability and the thermal stability also exhibit a maximum at x=6. T-g increases with the ageing time and the corresponding fictive temperature (T-f) calculated from the specific heat curves shows a decreasing trend. The molecular movements along the polymeric Se chains might cause the structural relaxation and the physical ageing. The physical ageing effect has been understood on the basis of the Bond Free Solid Angle (BFSA) model proposed by Kastner. Thermally crystallized samples show the formation of rhombohedral Sb2Te3, rhombohedral Sb2Se3 and hexagonal Te phases.
Resumo:
We have studied the preparation of zinc oxide nanoparticles loaded in various weight percentages in ortho-chloropolyaniline by in situ polymerization method. The length of the O-chloropolyaniline tube is found to be 200 nm and diameter is about 150 nm wherein the embedded ZnO nanoparticles is of 13 nm as confirmed from scanning electron microscopy as well as transmission electron microscopy characterizations. The presence of the vibration band of the metal oxide and other characteristic bands confirms that the polymer nanocomposites are characterized by their Fourier transmission infrared spectroscopy. The X-ray diffraction pattern of nanocomposites reveals their polycrystalline nature. Electrical property of nanocomposites is a function of the filler as well as the matrix. Cole-Cole plots reveal the presence of well-defined semicircular arcs at high frequencies which are attributed to the bulk resistance of the material. Among all nanocomposites, 30 wt% shows the low relaxation time of 151 s, and hence it has high conductivity.
Resumo:
The scattering of carriers by charged dislocations in semiconductors is studied within the framework of the linearized Boltzmann transport theory with an emphasis on examining consequences of the extreme anisotropy of the cylindrically symmetric scattering potential. A new closed-form approximate expression for the carrier mobility valid for all temperatures is proposed. The ratios of quantum and transport scattering times are evaluated after averaging over the anisotropy in the relaxation time. The value of the Hall scattering factor computed for charged dislocation scattering indicates that there may be a factor of two error in the experimental mobility estimates using the Hall data. An expression for the resistivity tensor when the dislocations are tilted with respect to the plane of transport is derived. Finally, an expression for the isotropic relaxation time is derived when the dislocations are located within the sample with a uniform angular distribution.
Resumo:
In the present study, ZnFe2O4 nanoparticles were synthesized by the chemical co-precipitation followed by calcinations at 473 and 673K for 4h. Particle sizes obtained were 4 and 6nm for the calcination temperatures of 473 and 673K, respectively. To study the origin of system's low temperature spin dynamic behaviour, temperature dependence of susceptibility was investigated as a function of particle size and frequency. Slight increase in the grain size from 4nm at 473K to 6nm at 673K has led to a peak shift of temperature dependence of susceptibility measured at a constant frequency of 400Hz. Temperature dependence of at different frequencies also resulted in peak shift. Relaxation time dependence of peak temperature obeys a power law, which provides the fitting parameters within the range of superparamagnetic nature of the particles. Further, dependence of relaxation time and peak temperature obeys VogelFulcher law rather than NeelBrown equation demonstrating that the particles follow the behaviour of superparamagnetism of slightly interacting system. Spinlattice, T-1 and spinspin, T-2 relaxivity of proton of the water molecule in the presence of chitosan-coated superparamagnetic ZnFe2O4 nanoparticle yields the values of 0.002 and 0.360s(1)perppm.
Resumo:
Chebyshev-inequality-based convex relaxations of Chance-Constrained Programs (CCPs) are shown to be useful for learning classifiers on massive datasets. In particular, an algorithm that integrates efficient clustering procedures and CCP approaches for computing classifiers on large datasets is proposed. The key idea is to identify high density regions or clusters from individual class conditional densities and then use a CCP formulation to learn a classifier on the clusters. The CCP formulation ensures that most of the data points in a cluster are correctly classified by employing a Chebyshev-inequality-based convex relaxation. This relaxation is heavily dependent on the second-order statistics. However, this formulation and in general such relaxations that depend on the second-order moments are susceptible to moment estimation errors. One of the contributions of the paper is to propose several formulations that are robust to such errors. In particular a generic way of making such formulations robust to moment estimation errors is illustrated using two novel confidence sets. An important contribution is to show that when either of the confidence sets is employed, for the special case of a spherical normal distribution of clusters, the robust variant of the formulation can be posed as a second-order cone program. Empirical results show that the robust formulations achieve accuracies comparable to that with true moments, even when moment estimates are erroneous. Results also illustrate the benefits of employing the proposed methodology for robust classification of large-scale datasets.
Resumo:
A Cu-Cu multilayer processed by accumulative roll bonding was deformed to large strains and further annealed. The texture of the deformed Cu-Cu multilayer differs from the conventional fcc rolling textures in terms of higher fractions of Bs and RD-rotated cube components, compared with the volume fraction of Cu component. The elongated grain shape significantly affects the deformation characteristics. Characteristic microstructural features of both continuous dynamic recrystallization and discontinuous dynamic recrystallization were observed in the microtexture measurements. X-ray texture measurements of annealing of heavily deformed multilayer demonstrate constrained recrystallization and resulted in a bimodal grain size distribution in the annealed material at higher strains. The presence of cube- and BR-oriented grains in the deformed material confirms the oriented nucleation as the major influence on texture change during recrystallization. Persistence of cube component throughout the deformation is attributed to dynamic recrystallization. Evolution of RD-rotated cube is attributed to the deformation of cube components that evolve from dynamic recrystallization. The relaxation of strain components leads to Bs at larger strains. Further, the Bs component is found to recover rather than recrystallize during deformation. The presence of predominantly Cu and Bs orientations surrounding the interface layer suggests constrained annealing behavior.
Resumo:
Ion conducting glasses in xLiCl-20Li(2)O-(80-x) 0.80P(2)O(5)-0.20MoO(3)] glass system have been prepared over a wide range of composition (X = 5, 10, 15, 20 and 25 mol%). The electrical conductivity and dielectric relaxation of these glasses were analyzed using impedance spectroscopy in the frequency range of 10 Hz-10 MHz and in the temperature range of 313-353 K. D.c. activation energies extracted from Arrhenius plots using regression analysis, decreases with increasing LiCl mol%. A.c. conductivity data has been fitted to both single and double power law equation with both fixed and variable parameters. The increased conductivity in the present glass system has been correlated with the volume increasing effect and the coordination changes that occur due to structural modification resulting in the creation of non-bridging oxygens (NBO's) of the type O-Mo-O- bonds in the glass network. Dielectric relaxation mechanism in these glasses is analyzed using Kohlrausch-Williams-Watts (KWW) stretched exponential function and stretched exponent (beta) is found to be insensitive to temperature.
Resumo:
We suggest a method of studying coherence in finite-level systems coupled to the environment and use it for the Hamiltonian that has been used to describe the light-harvesting pigment-protein complex. The method works with the adiabatic states and transforms the Hamiltonian to a form in which the terms responsible for decoherence and population relaxation are separated out. Decoherence is then accounted for nonperturbatively and population relaxation using a Markovian master equation. Almost analytical results can be obtained for the seven-level system, and the calculations are very simple for systems with more levels. We apply the treatment to the seven-level system, and the results are in excellent agreement with the exact numerical results of Nalbach et al. Nalbach, Braun, and Thorwart, Phys. Rev. E 84, 041926 (2011)]. Our approach is able to account for decoherence and population relaxation separately. It is found that decoherence causes only damping of oscillations and does not lead to transfer to the reaction center. Population relaxation is necessary for efficient transfer to the reaction center, in agreement with earlier findings. Our results show that the transformation to the adiabatic basis followed by a Redfield type of approach leads to results in good agreement with exact simulation.
Resumo:
The solution structure of the monomeric glutamine amidotransferase (GATase) subunit of the Methanocaldococcus janaschii (Mj) guanosine monophosphate synthetase (GMPS) has been determined using high-resolution nuclear magnetic resonance methods. Gel filtration chromatography and N-15 backbone relaxation studies have shown that the Mj GATase subunit is present in solution as a 21 kDa (188-residue) monomer. The ensemble of 20 lowest-energy structures showed root-mean-square deviations of 0.35 +/- 0.06 angstrom for backbone atoms and 0.8 +/- 0.06 angstrom for all heavy atoms. Furthermore, 99.4% of the backbone dihedral angles are present in the allowed region of the Ramachandran map, indicating the stereochemical quality of the structure. The core of the tertiary structure of the GATase is composed of a seven-stranded mixed beta-sheet that is fenced by five alpha-helices. The Mj GATase is similar in structure to the Pyrococcus horikoshi (Ph) GATase subunit. Nuclear magnetic resonance (NMR) chemical shift perturbations and changes in line width were monitored to identify residues on GATase that were responsible for interaction with magnesium and the ATPPase subunit, respectively. These interaction studies showed that a common surface exists for the metal ion binding as well as for the protein-protein interaction. The dissociation constant for the GATase-Mg2+ interaction has been found to be similar to 1 mM, which implies that interaction is very weak and falls in the fast chemical exchange regime. The GATase-ATPPase interaction, on the other hand, falls in the intermediate chemical exchange regime on the NMR time scale. The implication of this interaction in terms of the regulation of the GATase activity of holo GMPS is discussed.
Resumo:
Experimental and simulation studies have uncovered at least two anomalous concentration regimes in water-dimethyl sulfoxide (DMSO) binary mixture whose precise origin has remained a subject of debate. In order to facilitate time domain experimental investigation of the dynamics of such binary mixtures, we explore strength or extent of influence of these anomalies in dipolar solvation dynamics by carrying out long molecular dynamics simulations over a wide range of DMSO concentration. The solvation time correlation function so calculated indeed displays strong composition dependent anomalies, reflected in pronounced non-exponential kinetics and non-monotonous composition dependence of the average solvation time constant. In particular, we find remarkable slow-down in the solvation dynamics around 10%-20% and 35%-50% mole percentage. We investigate microscopic origin of these two anomalies. The population distribution analyses of different structural morphology elucidate that these two slowing down are reflections of intriguing structural transformations in water-DMSO mixture. The structural transformations themselves can be explained in terms of a change in the relative coordination number of DMSO and water molecules, from 1DMSO:2H(2)O to 1H(2)O:1DMSO and 1H(2)O:2DMSO complex formation. Thus, while the emergence of first slow down (at 15% DMSO mole percentage) is due to the percolation among DMSO molecules supported by the water molecules (whose percolating network remains largely unaffected), the 2nd anomaly (centered on 40%-50%) is due to the formation of the network structure where the unit of 1DMSO:1H(2)O and 2DMSO:1H(2)O dominates to give rise to rich dynamical features. Through an analysis of partial solvation dynamics an interesting negative cross-correlation between water and DMSO is observed that makes an important contribution to relaxation at intermediate to longer times.