409 resultados para Scandium aluminate magnesite crystal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new Cu(II)-picolinate complex was synthesized and characterized by single crystal X-ray crystallography. The complex crystallizes in the centrosymmetric triclinic space group P (1) over bar (no. 2). Picolinate in the complex extends the neutral unit into a 1-D chain through mu(2)-bridging carboxylate. The complex has a hydrogen bonding acceptor in the second coordination sphere allowing lattice water to assemble neighboring chains. Water self-assembles to form a zig-zag 1-D chain. The adjacent chains are assembled by C-H center dot center dot center dot O interactions result in the formation 2-D hydrogen bonded network. The overall hydrogen bonding between water chain and Cu-picolinate network yields a 3-D hydrogen bonded coordination network. X-ray structural analysis, FTIR and thermal analysis have been used to characterize the reported compound in the solid state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodeposition of nickel/barium hexa-aluminate (Ni/BHA) composite coatings has been carried out from a Watt's bath on mild steel substrate. BHA powders with plate habit were synthesized by solution combustion synthesis followed by heat treatment to ensure complete conversion to the hexa-aluminate phase. Heat treated material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) combined with X-ray analysis. The dispersion behaviour and stability of BHA suspensions with cationic and anionic surfactants at room temperature were studied by dynamic light scattering under different pH. The influence of BHA concentration in the electrolytic bath, deposition temperature, pH, current density and duty cycle on particle incorporation in the coatings were studied and conditions for maximum particle incorporation were established. Coatings with a roughness of about 0 center dot 4 mu m were produced by using this technique. Effect of BHA content on microhardness was also investigated. A reasonably good thickness of the coatings was achieved in a given set of conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium L-Ascorbate dihydrate (LLA) is a new metal organic nonlinear optical crystal belonging to the saccharide family. Single crystals of LLA were grown from aqueous solution. Solubility of the crystal has a positive temperature coefficient facilitating growth by slow cooling. Rietveld refinement was used to confirm the phase formation. The crystal has prismatic habit with (010), (001) and (10-1) prominent faces. Thermal analysis shows that the crystal is stable up to 102 degrees C. Transmission spectrum of the crystal extends from 302 nm to 1600 nm. Dielectric spectroscopic analysis revealed Cole Cole behaviour and prominent piezoelectric resonance peaks were observed in the range of 100-200 kHz. Second harmonic generation (SHG) conversion efficiency of up to 2.56 times that of a phase matched KDP crystal was achieved when the (010) plate of LLA single crystal was rotated about the +ve c axis, by 9.4 degrees in the clockwise direction. We also observed SHG conical sections which were attributed to noncollinear phase matching. The observation of the third conical section suggests very high birefringence and large nonlinear coefficients. A detailed study of surface laser damage showed that the crystal has high multiple damage thresholds of 9.7 GW cm(-2) and 42 GW cm(-2) at 1064 nm and 532 nm radiation respectively. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, four new multicomponent forms of lamotrigine (LTG) with selected carboxylic acids, viz. acetic acid, propionic acid, sorbic acid, and glutaric acid, have been identified. Preliminary solid-state characterization was done by differential scanning calorimetry/thermogravimetric, infrared, and powder X-ray diffraction techniques. X-ray single-crystal structure analysis confirmed the proton transfer, stoichiometry, and the molecular composition, revealing all of these to be a new salt/salt-cocrystal/salt monosolvate monohydrate of LTG. All four compounds exhibited both the aminopyridine dimer of LTG (motif 4) and cation-anion dimers between protonated LTG and the carboxylate anion in their crystal structures. Further, these new crystal forms were subjected to solubility studies in water, powder dissolution studies in 0.1 N HCl, and stability studies under humid conditions in comparison with pure LTG base. The solubility of these compounds in water is significantly enhanced compared with that of pure base, which is attributed to the type of packing motifs present in their crystal structures as well as to the lowering of the pH by the acidic coformers. Solid residues of all forms remaining after solubility and dissolution experiments were also assessed for any transformation in water and acidic medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to develop new MOCVD precursors, mixed-ligand metal-organic complexes, bis (acetylacetonato-k(2)O,O') (2,2'-bipyridine-k(2)N,N') magnesium(II), and his (acetylacetonato-k(2)O,O') (1,10-phenanthroline-k(2)N,N') magnesium(II) were synthesized. Spectroscopic characterization and crystal structures confirmed them to be monomeric and stable complexes. Crystal structure analysis suggests in each of the magnesium(II) complexes, the metal center has a distorted octahedral coordination geometry. Thermo-gravimetric analysis (TGA/DTA) suggests that these complexes are volatile and thermally stable. The thermal characteristics of newly designed complexes make them attractive precursors for MOCVD applications. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation is a technique for measuring the elastic modulus and hardness of small amounts of materials. This method, which has been used extensively for characterizing metallic and inorganic solids, is now being applied to organic and metalorganic crystals, and has also become relevant to the subject of crystal engineering, which is concerned with the design of molecular solids with desired properties and functions. Through nanoindentation it is possible to correlate molecular-level properties such as crystal packing, interaction characteristics, and the inherent anisotropy with micro/macroscopic events such as desolvation, domain coexistence, layer migration, polymorphism, and solid-state reactivity. Recent developments and exciting opportunities in this area are highlighted in this Minireview.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oximato bridged dinuclear copper(II) complex Cu(L)(CH3OH)](2)(ClO4)(2) with an oxime-Schiff base ligand, viz. 3-2-(dimethylamino)ethyl]imino]-2-butanoneoxime (HL), has been synthesized and structurally characterized. The dinuclear copper(II) complex crystallizes in monoclinic space group P2(1)/n with the unit cell parameters, a = 13.3564(9) angstrom, b = 12.0821(8) angstrom, c = 17.5045(11) angstrom, beta = 90.097, V = 2824.8(3) angstrom(3), Z = 4, R = 0.0769. The complex shows quasi-reversible cyclic voltammetric response at 0.844V (Delta E-p = 276 mV) at 100 mVs(-1). The binding studies of the complex with calf thymus DNA has been investigated using absorption spectrophotometry. Cleavage activity of the complex has been carried out on double stranded pBR 322 plasmid DNA by using gel electrophoresis experiments in the absence and in the presence of the oxidant, viz., H2O2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catch the twist: The cis Piv-Pro conformer (Piv=pivaloyl) of peptides is no longer inaccessible. Any cis X-Pro tertiary-amide-bond conformer can be stabilized in crystals of peptides by accommodating the unavoidable distortion of the dihedral angle of the peptide bond to the carbonyl group of the Pro residue (see picture), in this case through ni−1→πi* interactions. Steric clashes were not observed in the cis Piv-Pro rotamers studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the free energy barriers for homogeneous crystal nucleation in a system that exhibits a eutectic point are computed using Monte Carlo simulations. The system studied is a binary hard sphere mixture with a diameter ratio of 0.85 between the smaller and larger hard spheres. The simulations of crystal nucleation are performed for the entire range of fluid compositions. The free energy barrier is found to be the highest near the eutectic point and is nearly five times that for the pure fluid, which slows down the nucleation rate by a factor of 10(-31). These free energy barriers are some of highest ever computed using simulations. For most of the conditions studied, the composition of the critical nucleus corresponds to either one of the two thermodynamically stable solid phases. However, near the eutectic point, the nucleation barrier is lowest for the formation of the metastable random hexagonal closed packed (rhcp) solid phase with composition lying in the two-phase region of the phase diagram. The fluid to solid phase transition is hypothesized to proceed via formation of a metastable rhcp phase followed by a phase separation into respective stable fcc solid phases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structure of trans-atovaquone (antimalarial drug), its polymorph and its stereoisomer (cis) along with five other derivatives with different functional groups have been analyzed. Based on the conformational features of these compounds and the characteristics of the nature of intermolecular interactions, valuable insights into the atomistic details of protein-inhibitor interactions have been derived by docking studies. Atovaquone and its derivatives pack in the crystal lattice using intermolecular O-H center dot center dot center dot O hydrogen bond dimer motifs supported by surrogate weak interactions including C-H center dot center dot center dot O and C-H center dot center dot center dot Cl hydrogen bonds. The docking results of these molecules with cytochrome bc(1) show preferences to form N-H center dot center dot center dot O, O-H center dot center dot center dot O and O-H center dot center dot center dot Cl hydrogen bonds. The involvement of halogen atoms in the binding pocket appears to be significant and is contrary to the theoretically predicted mechanism of protein-ligand docking reported earlier based on mimicking experimental binding results of stigmatellin with cytochrome bc(1). The significance of subtle energy factors controlled by weak intermolecular interactions appears to play a major role in drug binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, efforts were made to study the different frictional responses of materials with varying crystal structure and hardness during sliding against a relatively harder material of different surface textures and roughness. In the experiments, pins were made of pure metals and alloys with significantly different hardness values. Pure metals were selected based on different class of crystal structures, such as face centered cubic (FCC), body centered cubic (BCC), body centered tetragonal (BCT) and hexagonal close packed (HCP) structures. The surface textures with varying roughness were generated on the counterpart plate which was made of H-11 die steel. The experiments were conducted under dry and lubricated conditions using an inclined pin-on-plate sliding tester for various normal loads at ambient environment. In the experiments, it was found that the coefficient of friction is controlled by the surface texture of the harder mating surfaces. Further, two kinds of frictional response, namely steady-state and stick-slip, were observed during sliding. More specifically, stead-state frictional response was observed for the FCC metals, alloys and materials with higher hardness. Stick-slip frictional response was observed for the metals which have limited number of slip systems such as BCT and HCP. In addition, the stick-slip frictional response was dependent on the normal load, lubrication, hardness and surface texture of the counterpart material. However, for a given kind of surface texture, the roughness of the surface affects neither the average coefficient of friction nor the amplitude of stick-slip oscillation significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do molecules aggregate in solution, and how do these aggregates consolidate themselves in crystals? What is the relationship between the structure of a molecule and the structure of the crystal it forms? Why do some molecules adopt more than one crystal structure? Why do some crystal structures contain solvent? How does one design a crystal structure with a specified topology of molecules, or a specified coordination of molecules and/or ions, or with a specified property? What are the relationships between crystal structures and properties for molecular crystals? These are some of the questions that are being addressed today by the crystal engineering community, a group that draws from the larger communities of organic, inorganic, and physical chemists, crystallographers, and solid state scientists. This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design. It also provides a look to the future from the viewpoint of the author, and indicates some directions in which this field might be moving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new 3D cadmium(II) coordination polymer, Cd(C2O4)(0.5)Cl(H2O)](n) (1) has been synthesized from a mixture of CdCl2. H2O and (NH4)(2)C2O4 in a slightly acidic pH. Its molecular structure was determined by single crystal X-ray diffraction which reveals that the new polymeric structure consists of simultaneous mu(4)-oxalato, mu-aquo, and mu-chlorido bridges between the metal centers, embedded in distorted pentagonal bipyramidal geometries. On thermal analysis compound exhibits high thermal stability up to 330 degrees C. Compound 1 also exhibits strong fluorescent emission. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although weak interactions, such as C-H center dot center dot center dot O and pi-stacking, are generally considered to be insignificant, it is their reorganization that holds the key for many a solid-state phenomenon, such as phase transitions, plastic deformation, elastic flexibility, and mechanochromic luminescence in solid-state fluorophores. Despite this, the role of weak interactions in these dynamic phenomena is poorly understood. In this study, we investigate two co-crystal polymorphs of caffeine:4-chloro-3-nitrobenzoic acid, which have close structural similarity (2D layered structures), but surprisingly show distinct mechanical behavior. Form I is brittle, but shows shear-induced phase instability and, upon grinding, converts to Form II, which is soft and plastically shearable. This observation is in contrast to those reported in earlier studies on aspirin, wherein the metastable drug forms are softer and convert to stable and harder forms upon stressing To establish a molecular level understanding, have investigated the two co-crystal polymorphs I and II by single crystal X-ray diffraction, nanoindentation to quantify mechanical properties, and theoretical calculations. The lower hardness (from nanoindentation) and smooth potential surfaces (from theoretical studies) for shearing of layers in Form II allowed us to rationalize the role of stronger intralayer (sp(2))C-H center dot center dot center dot O and nonspecific interlayer pi-stacking interactions in the structure of II. Although the Form I also possesses the same type of interactions, its strength is clearly opposite, that is, weaker intralayer (sp(3))C-H center dot center dot center dot O and specific interlayer pi-stacking interactions. Hence, Form I is harder than Form IL Theoretical calculations and indentation on (111) of Form I suggested the low resistance of this face to mechanical stress; thus, Form I converts to II upon mechanical action. Hence, our approach demonstrates the usefulness of multiple techniques for establishing the role of weak noncovalent interactions in solid-state dynamic phenomena, such as stress induced phase transformation, and hence is important in the context of solid-state pharmaceutical chemistry and crystal engineering.