449 resultados para Free interface
Resumo:
In this paper, the free vibration of a non-uniform free-free Euler-Bernoulli beam is studied using an inverse problem approach. It is found that the fourth-order governing differential equation for such beams possess a fundamental closed-form solution for certain polynomial variations of the mass and stiffness. An infinite number of non-uniform free-free beams exist, with different mass and stiffness variations, but sharing the same fundamental frequency. A detailed study is conducted for linear, quadratic and cubic variations of mass, and on how to pre-select the internal nodes such that the closed-form solutions exist for the three cases. A special case is also considered where, at the internal nodes, external elastic constraints are present. The derived results are provided as benchmark solutions for the validation of non-uniform free-free beam numerical codes. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Recent data from high-statistics experiments that have measured the modulus of the pion electromagnetic form factor from threshold to relatively high energies are used as input in a suitable mathematical framework of analytic continuation to find stringent constraints on the shape parameters of the form factor at t = 0. The method uses also as input a precise description of the phase of the form factor in the elastic region based on Fermi-Watson theorem and the analysis of the pi pi scattering amplitude with dispersive Roy equations, and some information on the spacelike region coming from recent high precision experiments. Our analysis confirms the inconsistencies of several data on the modulus, especially from low energies, with analyticity and the input phase, noted in our earlier work. Using the data on the modulus from energies above 0.65 GeV, we obtain, with no specific parametrisation, the prediction < r(pi)(2)> is an element of (0.42, 0.44) fm(2) for the charge radius. The same formalism leads also to very narrow allowed ranges for the higher-order shape parameters at t = 0, with a strong correlation among them.
Resumo:
Effect of stress and interface defects on photo luminescence property of a silicon nano-crystal (Si-nc) embedded in amorphous silicon dioxide (a-SiO2) are studied in this paper using a self-consistent quantum-continuum based modeling framework. Si-ncs or quantum dots show photoluminescence at room temperature. Whether its origin is due to Si-nc/a-SiO2 interface defects or quantum confinement of carriers in Si-nc is still an outstanding question. Earlier reports have shown that stresses greater than 12 GPa change the indirect energy band gap structure of bulk Si to a direct energy band gap structure. Such stresses are observed very often in nanostructures and these stresses influence the carrier confinement energy significantly. Hence, it is important to determine the effect of stress in addition to the structure of interface defects on photoluminescence property of Si-nc. In the present work, first a Si-nc embedded in a-SiO2 is constructed using molecular dynamics simulation framework considering the actual conditions they are grown so that the interface and residual stress in the structure evolves naturally during formation. We observe that the structure thus created has an interface of about 1 nm thick consisting of 41.95% of defective states mostly Sin+ (n = 0 to 3) coordination states. Further, both the Si-nc core and the embedding matrix are observed to be under a compressive strain. This residual strain field is applied in an effective mass k.p Hamiltonian formulation to determine the energy states of the carriers. The photo luminescence property computed based on the carrier confinement energy and interface energy states associated with defects will be analysed in details in the paper.
Resumo:
To address the amount of disorder and interface diffusion induced by annealing, all-Heusler multilayer structures, consisting of ferromagnetic Co2MnGe and nonmagnetic Rh2CuSn layers of varying thicknesses, have been investigated by means of hard x-ray photoelectron spectroscopy and x-ray magnetic circular dichroism. We find evidence for a 4 angstrom thick magnetically dead layer that, together with the identified interlayer diffusion, are likely reasons for the unexpectedly small magnetoresistance found for current-perpendicular-to-plane giant magnetoresistance devices based on this all-Heusler system. We find that diffusion begins already at comparably low temperatures between 200 and 250 degrees C, where Mn appears to be most prone to diffusion.
Resumo:
In many systems, nucleation of a stable solid may occur in the presence of other (often more than one) metastable phases. These may be polymorphic solids or even liquid phases. Sometimes, the metastable phase might have a lower free energy minimum than the liquid but higher than the stable-solid-phase minimum and have characteristics in between the parent liquid and the globally stable solid phase. In such cases, nucleation of the solid phase from the melt may be facilitated by the metastable phase because the latter can ``wet'' the interface between the parent and the daughter phases, even though there may be no signature of the existence of metastable phase in the thermodynamic properties of the parent liquid and the stable solid phase. Straightforward application of classical nucleation theory (CNT) is flawed here as it overestimates the nucleation barrier because surface tension is overestimated (by neglecting the metastable phases of intermediate order) while the thermodynamic free energy gap between daughter and parent phases remains unchanged. In this work, we discuss a density functional theory (DFT)-based statistical mechanical approach to explore and quantify such facilitation. We construct a simple order-parameter-dependent free energy surface that we then use in DFT to calculate (i) the order parameter profile, (ii) the overall nucleation free energy barrier, and (iii) the surface tension between the parent liquid and the metastable solid and also parent liquid and stable solid phases. The theory indeed finds that the nucleation free energy barrier can decrease significantly in the presence of wetting. This approach can provide a microscopic explanation of the Ostwald step rule and the well-known phenomenon of ``disappearing polymorphs'' that depends on temperature and other thermodynamic conditions. Theory reveals a diverse scenario for phase transformation kinetics, some of which may be explored via modem nanoscopic synthetic methods.
Resumo:
Establishing the relative orientation of the two benzene molecules in the dimer has remained an enigmatic challenge. Consensus has narrowed the choice of structures to either a T-shape, that may be tilted, or a parallel displaced arrangement, but the relatively small energy differences makes identifying the global minimum difficult. Here we report an ab initio Car-Parrinello Molecular Dynamics based metadynamics computation of the free-energy landscape of the benzene dimer. Our calculations show that although competing structures may be isoenergetic, free energy always favors a tilted T-shape geometry at all temperatures where the bound benzene dimer exist. (C) 2013 AIP Publishing LLC.
Resumo:
Phosphorylation of amines, alcohols, and sulfoximines are accomplished using molecular iodine as a catalyst and H2O2 as the sole oxidant under mild reaction conditions. This method provides an easy route for synthesizing a variety of phosphoramidates, phosphorus triesters and sulfoximine-derived phosphoramidates which are of biological importance.
Resumo:
Using a solid-state electrochemical technique, thermodynamic properties of three sulfide phases (RhS0.882, Rh3S4, Rh2S3) in the binary system (Rh + S) are measured as a function of temperature over the range from (925 to 1275) K. Single crystal CaF2 is used as the electrolyte. The auxiliary electrode consisting of (CaS + CaF2) is designed in such a way that the sulfur chemical potential converts into an equivalent fluorine potential at each electrode. The sulfur potentials at the measuring electrodes are established by the mixtures of (Rh + RhS0.882), (RhS0.882 + Rh3S4) and (Rh3S4 + Rh2S3) respectively. A gas mixture (H-2 + H2S + Ar) of known composition fixes the sulfur potential at the reference electrode. A novel cell design with physical separation of rhodium sulfides in the measuring electrode from CaS in the auxiliary electrode is used to prevent interaction between the two sulfide phases. They equilibrate only via the gas phase in a hermetically sealed reference enclosure. Standard Gibbs energy changes for the following reactions are calculated from the electromotive force of three cells: 2.2667Rh (s) + S-2 (g) -> 2.2667RhS(0.882) (s), Delta(r)G degrees +/- 2330/(J . mol(-1)) = -288690 + 146.18 (T/K), 4.44RhS(0.882) (s) + S-2 (g) -> 1.48Rh(3)S(4) (s), Delta(r)G degrees +/- 2245/(J . mol(-1)) = -245596 + 164.31 (T/K), 4Rh(3)S(4) (s) + S-2 (g) -> 6Rh(2)S(3) (s), Delta(r)G degrees +/- 2490/(J . mol(-1)) = -230957 + 160: 03 (T/K). Standard entropy and enthalpy of formation of rhodium sulfides from elements in their normal standard states at T = 298.15 K are evaluated. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The nature of the pre-morphotropic phase boundary (MPB) cubic-like state in the lead-free piezoelectric ceramics (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 at x similar to 0.06 has been examined in detail by electric field and temperature dependent neutron diffraction, x-ray diffraction, dielectric and ferroelectric characterization. The superlattice reflections in the neutron diffraction patterns cannot be explained with the tetragonal P4bm and the rhombohedral (R3c) phase coexistence model. The cubic like state is rather a result of long ranged modulated complex octahedral tilt. This modulated structure exhibits anomalously large dielectric dispersion. The modulated structure transforms to a MPB state on poling. The field-stabilized MPB state is destroyed and the modulated structure is restored on heating the poled specimen above the Vogel-Fulcher freezing temperature. The results show the predominant role of competing octahedral tilts in determining the nature of structural and polar states in Na1/2Bi1/2TiO3-based ferroelectrics. (C) 2013 AIP Publishing LLC.
Resumo:
Non-human primate populations, other than responding appropriately to naturally occurring challenges, also need to cope with anthropogenic factors such as environmental pollution, resource depletion, and habitat destruction. Populations and individuals are likely to show considerable variations in food extraction abilities, with some populations and individuals more efficient than others at exploiting a set of resources. In this study, we examined among urban free-ranging bonnet macaques, Macaca radiata (a) local differences in food extraction abilities, (b) between-individual variation and within-individual consistency in problem-solving success and the underlying problem-solving characteristics, and (c) behavioral patterns associated with higher efficiency in food extraction. When presented with novel food extraction tasks, the urban macaques having more frequent exposure to novel physical objects in their surroundings, extracted food material from PET bottles and also solved another food extraction task (i.e., extracting an orange from a wire mesh box), more often than those living under more natural conditions. Adults solved the tasks more frequently than juveniles, and females more frequently than males. Both solution-technique and problem-solving characteristics varied across individuals but remained consistent within each individual across the successive presentations of PET bottles. The macaques that solved the tasks showed lesser within-individual variation in their food extraction behavior as compared to those that failed to solve the tasks. A few macaques appropriately modified their problem-solving behavior in accordance with the task requirements and solved the modified versions of the tasks without trial-and-error learning. These observations are ecologically relevant - they demonstrate considerable local differences in food extraction abilities, between-individual variation and within-individual consistency in food extraction techniques among free-ranging bonnet macaques, possibly affecting the species' local adaptability and resilience to environmental changes.
Resumo:
The occurrence of musth, a period of elevated levels of androgens and heightened sexual activity, has been well documented for the male Asian elephant (Elephas maximus). However, the relationship between androgen-dependent musth and adrenocortical function in this species is unclear. The current study is the first assessment of testicular and adrenocortical function in free-ranging male Asian elephants by measuring levels of testosterone (androgen) and cortisol (glucocorticoid - a physiological indicator of stress) metabolites in faeces. During musth, males expectedly showed significant elevation in faecal testosterone metabolite levels. Interestingly, glucocorticoid metabolite concentrations remained unchanged between musth and non-musth periods. This observation is contrary to that observed with wild and captive African elephant bulls and captive Asian bull elephants. Our results show that musth may not necessarily represent a stressful condition in free-ranging male Asian elephants.
Resumo:
Recent years have seen a tremendous increase in the interest for constructing hollowed-out molecular frameworks, for their potential uses. Metal-ligand coordination-driven self-assembly has provided multitudes of opportunities in the formation of molecular architectures of desired shapes and sizes, with the help of the information already coded in the components. This article summarizes the recent developments in the construction of multicomponent molecular cages through this process, with a focus on the decreasing relevance of templates, and use of these systems in catalysis/host-guest chemistry.
Resumo:
Transfer free processes using Cu films greatly simplify the fabrication of reliable suspended graphene devices. In this paper, the authors report on the use of electrodeposited Cu films on Si for transfer free fabrication of suspended graphene devices. The quality of graphene layers on optimized electrodeposited Cu and Cu foil are found to be the same. By selectively etching the underlying Cu, the authors have realized by a transfer free process metal contacted, suspended graphene beams up to 50 mu m in length directly on Si. The suspended graphene beams do not show any increase in defect levels over the as grown state indicating the efficiency of the transfer free process. Measured room temperature electronic mobilities of up to 5200 cm(2)/V.s show that this simpler and CMOS compatible route has the potential to replace the foil based route for such suspended nano and micro electromechanical device arrays. (C) 2014 American Vacuum Society.
Resumo:
In the present work, a cooling channel is employed to produce semi-solid A356 alloy slurry. To understand the transport process involved, a 3D non-isothermal, multiphase volume averaging model has been developed for simulation of the semi-solid slurry generation process in the cooling channel. For simulation purpose, the three phases considered are the parent melt, the nearly spherical grains and air as separated but highly coupled interpenetrating continua. The conservation equations of mass, momentum, energy and species have been solved for each phase and the thermal and mechanical interactions (drag force) among the phases have been considered using appropriate model. The superheated liquid alloy is poured at the top of the cooling slope/channel, where specified velocity inlet boundary condition is used in the model, and allowed to flow along gravity through the channel. The melt loses its superheat and becomes semisolid up to the end of cooling channel due to the evolving -Al grains with decreasing temperature. The air phase forms a definable air/liquid melt interface, i.e. free surface, due its low density. The results obtained from the present model includes volume fractions of three different phases considered, grain evolution, grain growth rate, size and distribution of solid grains. The effect of key process variables such as pouring temperature, slope angle of the cooling channel and cooling channel wall temperature on temperature distribution, velocity distribution, grain formation and volume fraction of different phases are also studied. The results obtained from the simulations are validated by microstructure study using SEM and quantitative image analysis of the semi-solid slurry microstructure obtained from the experimental set-up.