399 resultados para Dynamic optimization
Resumo:
Dendritic rnicroenvironments defined by dynamic internal cavities of a dendrimer were probed through geometric isomerization of stilbene and azobenzene. A third-generation poly(alkyl aryl ether) dendrimer with hydrophilic exterior and hydrophobic interior was used as a reaction cavity in aqueous medium. The dynamic inner cavity sizes were varied by utilizing alkyl linkers that connect the branch junctures from ethyl to n-pentyl moiety (C(2)G(3)-C(5)G(3)). Dendrimers constituted with n-pentyl linker were found to afford higher solubilities of stilbene and azobenzene. Direct irradiation of trans-stilbene showed that C(5)G(3) and C(4)G(3) dendrimers afforded considerable phenanthrene formation, in addition to cis-stilbene, whereas C(3)G(3) and C(2)G(3) gave only cis-stilbene. An electron-transfer sensitized trans-cis isomerization, using cresyl violet perchlorate as the sensitizer, also led to similar results. Thermal isomerization of cis-azobenzene to trans-azobenzene within dendritic microenvironments revealed that the activation energy of the cis- to trans-isomer was increasing in the series C(5)G(3) < C(4)G(3) < C(3)G(3)
Resumo:
Present day power systems are growing in size and complexity of operation with inter connections to neighboring systems, introduction of large generating units, EHV 400/765 kV AC transmission systems, HVDC systems and more sophisticated control devices such as FACTS. For planning and operational studies, it requires suitable modeling of all components in the power system, as the number of HVDC systems and FACTS devices of different type are incorporated in the system. This paper presents reactive power optimization with three objectives to minimize the sum of the squares of the voltage deviations (ve) of the load buses, minimization of sum of squares of voltage stability L-indices of load buses (¿L2), and also the system real power loss (Ploss) minimization. The proposed methods have been tested on typical sample system. Results for Indian 96-bus equivalent system including HVDC terminal and UPFC under normal and contingency conditions are presented.
Resumo:
A generalized power tracking algorithm that minimizes power consumption of digital circuits by dynamic control of supply voltage and the body bias is proposed. A direct power monitoring scheme is proposed that does not need any replica and hence can sense total power consumed by load circuit across process, voltage, and temperature corners. Design details and performance of power monitor and tracking algorithm are examined by a simulation framework developed using UMC 90-nm CMOS triple well process. The proposed algorithm with direct power monitor achieves a power savings of 42.2% for activity of 0.02 and 22.4% for activity of 0.04. Experimental results from test chip fabricated in AMS 350 nm process shows power savings of 46.3% and 65% for load circuit operating in super threshold and near sub-threshold region, respectively. Measured resolution of power monitor is around 0.25 mV and it has a power overhead of 2.2% of die power. Issues with loop convergence and design tradeoff for power monitor are also discussed in this paper.
Resumo:
This work focuses on the design of torsional microelectromechanical systems (MEMS) varactors to achieve highdynamic range of capacitances. MEMS varactors fabricated through the polyMUMPS process are characterized at low and high frequencies for their capacitance-voltage characteristics and electrical parasitics. The effect of parasitic capacitances on tuning ratio is studied and an equivalent circuit is developed. Two variants of torsional varactors that help to improve the dynamic range of torsional varactors despite the parasitics are proposed and characterized. A tuning ratio of 1:8, which is the highest reported in literature, has been obtained. We also demonstrate through simulations that much higher tuning ratios can be obtained with the designs proposed. The designs and experimental results presented are relevant to CMOS fabrication processes that use low resistivity substrate. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JMM.11.1.013006]
Resumo:
The importance of air bearing design is growing in engineering. As the trend to precision and ultra precision manufacture gains pace and the drive to higher quality and more reliable products continues, the advantages which can be gained from applying aerostatic bearings to machine tools, instrumentation and test rigs is becoming more apparent. The inlet restrictor design is significant for air bearings because it affects the static and dynamic performance of the air bearing. For instance pocketed orifice bearings give higher load capacity as compared to inherently compensated orifice type bearings, however inherently compensated orifices, also known as laminar flow restrictors are known to give highly stable air bearing systems (less prone to pneumatic hammer) as compared to pocketed orifice air bearing systems. However, they are not commonly used because of the difficulties encountered in manufacturing and assembly of the orifice designs. This paper aims to analyse the static and dynamic characteristics of inherently compensated orifice based flat pad air bearing system. Based on Reynolds equation and mass conservation equation for incompressible flow, the steady state characteristics are studied while the dynamic state characteristics are performed in a similar manner however, using the above equations for compressible flow. Steady state experiments were also performed for a single orifice air bearing and the results are compared to that obtained from theoretical studies. A technique to ease the assembly of orifices with the air bearing plate has also been discussed so as to make the manufacturing of the inherently compensated bearings more commercially viable. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
This article aims to obtain damage-tolerant designs with minimum weight for a laminated composite structure using genetic algorithm. Damage tolerance due to impacts in a laminated composite structure is enhanced by dispersing the plies such that too many adjacent plies do not have the same angle. Weight of the structure is minimized and the Tsai-Wu failure criterion is considered for the safe design. Design variables considered are the number of plies and ply orientation. The influence of dispersed ply angles on the weight of the structure for a given loading conditions is studied by varying the angles in the range of 0 degrees-45 degrees, 0 degrees-60 degrees and 0 degrees-90 degrees at intervals of 5 degrees and by using specific ply angles tailored to loading conditions. A comparison study is carried out between the conventional stacking sequence and the stacking sequence with dispersed ply angles for damage-tolerant weight minimization and some useful designs are obtained. Unconventional stacking sequence is more damage tolerant than the conventional stacking sequence is demonstrated by performing a finite element analysis under both tensile as well as compressive loading conditions. Moreover, a new mathematical function called the dispersion function is proposed to measure the dispersion of ply angles in a laminate. The approach for dispersing ply angles to achieve damage tolerance is especially suited for composite material design space which has multiple local minima.
Resumo:
Accurate estimation of mass transport parameters is necessary for overall design and evaluation processes of the waste disposal facilities. The mass transport parameters, such as effective diffusion coefficient, retardation factor and diffusion accessible porosity, are estimated from observed diffusion data by inverse analysis. Recently, particle swarm optimization (PSO) algorithm has been used to develop inverse model for estimating these parameters that alleviated existing limitations in the inverse analysis. However, PSO solver yields different solutions in successive runs because of the stochastic nature of the algorithm and also because of the presence of multiple optimum solutions. Thus the estimated mean solution from independent runs is significantly different from the best solution. In this paper, two variants of the PSO algorithms are proposed to improve the performance of the inverse analysis. The proposed algorithms use perturbation equation for the gbest particle to gain information around gbest region on the search space and catfish particles in alternative iterations to improve exploration capabilities. Performance comparison of developed solvers on synthetic test data for two different diffusion problems reveals that one of the proposed solvers, CPPSO, significantly improves overall performance with improved best, worst and mean fitness values. The developed solver is further used to estimate transport parameters from 12 sets of experimentally observed diffusion data obtained from three diffusion problems and compared with published values from the literature. The proposed solver is quick, simple and robust on different diffusion problems. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Clustered architecture processors are preferred for embedded systems because centralized register file architectures scale poorly in terms of clock rate, chip area, and power consumption. Although clustering helps by improving the clock speed, reducing the energy consumption of the logic, and making the design simpler, it introduces extra overheads by way of inter-cluster communication. This communication happens over long global wires having high load capacitance which leads to delay in execution and significantly high energy consumption. Inter-cluster communication also introduces many short idle cycles, thereby significantly increasing the overall leakage energy consumption in the functional units. The trend towards miniaturization of devices (and associated reduction in threshold voltage) makes energy consumption in interconnects and functional units even worse, and limits the usability of clustered architectures in smaller technologies. However, technological advancements now permit the design of interconnects and functional units with varying performance and power modes. In this paper, we propose scheduling algorithms that aggregate the scheduling slack of instructions and communication slack of data values to exploit the low-power modes of functional units and interconnects. Finally, we present a synergistic combination of these algorithms that simultaneously saves energy in functional units and interconnects to improves the usability of clustered architectures by achieving better overall energy-performance trade-offs. Even with conservative estimates of the contribution of the functional units and interconnects to the overall processor energy consumption, the proposed combined scheme obtains on average 8% and 10% improvement in overall energy-delay product with 3.5% and 2% performance degradation for a 2-clustered and a 4-clustered machine, respectively. We present a detailed experimental evaluation of the proposed schemes. Our test bed uses the Trimaran compiler infrastructure. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this paper we study constrained maximum entropy and minimum divergence optimization problems, in the cases where integer valued sufficient statistics exists, using tools from computational commutative algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. We give an implicit description of maximum entropy models by embedding them in algebraic varieties for which we give a Grobner basis method to compute it. In the cases of minimum KL-divergence models we show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner basis method to embed minimum KL-divergence models in algebraic varieties. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Many problems of state estimation in structural dynamics permit a partitioning of system states into nonlinear and conditionally linear substructures. This enables a part of the problem to be solved exactly, using the Kalman filter, and the remainder using Monte Carlo simulations. The present study develops an algorithm that combines sequential importance sampling based particle filtering with Kalman filtering to a fairly general form of process equations and demonstrates the application of a substructuring scheme to problems of hidden state estimation in structures with local nonlinearities, response sensitivity model updating in nonlinear systems, and characterization of residual displacements in instrumented inelastic structures. The paper also theoretically demonstrates that the sampling variance associated with the substructuring scheme used does not exceed the sampling variance corresponding to the Monte Carlo filtering without substructuring. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To optimize the data-collection strategy for diffuse optical tomography and to obtain a set of independent measurements among the total measurements using the model based data-resolution matrix characteristics. Methods: The data-resolution matrix is computed based on the sensitivity matrix and the regularization scheme used in the reconstruction procedure by matching the predicted data with the actual one. The diagonal values of data-resolution matrix show the importance of a particular measurement and the magnitude of off-diagonal entries shows the dependence among measurements. Based on the closeness of diagonal value magnitude to off-diagonal entries, the independent measurements choice is made. The reconstruction results obtained using all measurements were compared to the ones obtained using only independent measurements in both numerical and experimental phantom cases. The traditional singular value analysis was also performed to compare the results obtained using the proposed method. Results: The results indicate that choosing only independent measurements based on data-resolution matrix characteristics for the image reconstruction does not compromise the reconstructed image quality significantly, in turn reduces the data-collection time associated with the procedure. When the same number of measurements (equivalent to independent ones) are chosen at random, the reconstruction results were having poor quality with major boundary artifacts. The number of independent measurements obtained using data-resolution matrix analysis is much higher compared to that obtained using the singular value analysis. Conclusions: The data-resolution matrix analysis is able to provide the high level of optimization needed for effective data-collection in diffuse optical imaging. The analysis itself is independent of noise characteristics in the data, resulting in an universal framework to characterize and optimize a given data-collection strategy. (C) 2012 American Association of Physicists in Medicine. http://dx.doi.org/10.1118/1.4736820]
Resumo:
Traditional image reconstruction methods in rapid dynamic diffuse optical tomography employ l(2)-norm-based regularization, which is known to remove the high-frequency components in the reconstructed images and make them appear smooth. The contrast recovery in these type of methods is typically dependent on the iterative nature of method employed, where the nonlinear iterative technique is known to perform better in comparison to linear techniques (noniterative) with a caveat that nonlinear techniques are computationally complex. Assuming that there is a linear dependency of solution between successive frames resulted in a linear inverse problem. This new framework with the combination of l(1)-norm based regularization can provide better robustness to noise and provide better contrast recovery compared to conventional l(2)-based techniques. Moreover, it is shown that the proposed l(1)-based technique is computationally efficient compared to its counterpart (l(2)-based one). The proposed framework requires a reasonably close estimate of the actual solution for the initial frame, and any suboptimal estimate leads to erroneous reconstruction results for the subsequent frames.