349 resultados para relay networks
Resumo:
In this work, interference alignment for a class of Gaussian interference networks with general message demands, having line of sight (LOS) channels, at finite powers is considered. We assume that each transmitter has one independent message to be transmitted and the propagation delays are uniformly distributed between 0 and (L - 1) (L >; 0). If receiver-j, j ∈{1,2,..., J}, requires the message of transmitter-i, i ∈ {1, 2, ..., K}, we say (i, j) belongs to a connection. A class of interference networks called the symmetrically connected interference network is defined as a network where, the number of connections required at each transmitter-i is equal to ct for all i and the number of connections required at each receiver-j is equal to cr for all j, for some fixed positive integers ct and cr. For such networks with a LOS channel between every transmitter and every receiver, we show that an expected sum-spectral efficiency (in bits/sec/Hz) of at least K/(e+c1-1)(ct+1) (ct/ct+1)ct log2 (1+min(i, j)∈c|hi, j|2 P/WN0) can be achieved as the number of transmitters and receivers tend to infinity, i.e., K, J →∞ where, C denotes the set of all connections, hij is the channel gain between transmitter-i and receiver-j, P is the average power constraint at each transmitter, W is the bandwidth and N0 W is the variance of Gaussian noise at each receiver. This means that, for an LOS symmetrically connected interference network, at any finite power, the total spectral efficiency can grow linearly with K as K, J →∞. This is achieved by extending the time domain interference alignment scheme proposed by Grokop et al. for the k-user Gaussian interference channel to interference networks.
Resumo:
This paper studies the impact of exclusive contracts between a content provider (CP) and an internet service provider (ISP) in a nonneutral network. We consider a simple linear demand function for the CPs. We studywhen an exclusive contract is benefcial to the colluding pair and evaluate its impact on the noncolluding players at equilibrium. For the case of two CPs and one ISP we show that collusion may not always be benefcial. We derive an explicit condition in terms of the advertisement revenues of the CPs that tells when a collusion is proftable to the colluding entities.
Resumo:
The broadcast nature of the wireless medium jeopardizes secure transmissions. Cryptographic measures fail to ensure security when eavesdroppers have superior computational capability; however, it can be assured from information theoretic security approaches. We use physical layer security to guarantee non-zero secrecy rate in single source, single destination multi-hop networks with eavesdroppers for two cases: when eavesdropper locations and channel gains are known and when their positions are unknown. We propose a two-phase solution which consists of finding activation sets and then obtaining transmit powers subject to SINR constraints for the case when eavesdropper locations are known. We introduce methods to find activation sets and compare their performance. Necessary but reasonable approximations are made in power minimization formulations for tractability reasons. For scenarios with no eavesdropper location information, we suggest vulnerability region (the area having zero secrecy rate) minimization over the network. Our results show that in the absence of location information average number of eavesdroppers who have access to data is reduced.
Resumo:
Two new anionic inorganic-organic hybrid compounds H3O]Mn-3(mu(3)-OH)(C14H8O6S)(3)(H2O)](DMF)(5), I, and H3O](2)Mn-7(mu(3)-OH)(4)(C14H8O6S)(6)(H2O)(4)](H2O)(2)(DMF)(8), II have been prepared by employing mild solvothennal methods. Both the compounds have three-dimensionally extended structures formed by Mn-6 and Mn-7 clusters, respectively. The connectivity between Mn-6 and Mn-7 clusters and 4,4'-sulfonyldibenzoic acid anions (SDBA(2-)) results in a six connected pcu network in I and an eight connected bcu network in II. The presence of hydronium ion (H-3(O+)) along with the solvent molecules in the channels of both the compounds suggested proton conduction in the solids. Proton conductivity studies gave values of similar to 3 x 10(-4) Omega(-1) cm(-1) 98% relative humidity in both the compounds. The high activation energies indicate a vehicle mechanism in the compounds I and II. Magnetic studies indicate antiferromagnetic behavior in both the compounds.
Resumo:
We study the tradeoff between delivery delay and energy consumption in a delay-tolerant network in which a message (or a file) has to be delivered to each of several destinations by epidemic relaying. In addition to the destinations, there are several other nodes in the network that can assist in relaying the message. We first assume that, at every instant, all the nodes know the number of relays carrying the message and the number of destinations that have received the message. We formulate the problem as a controlled continuous-time Markov chain and derive the optimal closed-loop control (i.e., forwarding policy). However, in practice, the intermittent connectivity in the network implies that the nodes may not have the required perfect knowledge of the system state. To address this issue, we obtain an ordinary differential equation (ODE) (i.e., a deterministic fluid) approximation for the optimally controlled Markov chain. This fluid approximation also yields an asymptotically optimal open-loop policy. Finally, we evaluate the performance of the deterministic policy over finite networks. Numerical results show that this policy performs close to the optimal closed-loop policy.
Resumo:
In this letter, we analyze the end-to-end average bit error probability (ABEP) of space shift keying (SSK) in cooperative relaying with decode-and-forward (DF) protocol, considering multiple relays with a threshold based best relay selection, and selection combining of direct and relayed paths at the destination. We derive an exact analytical expression for the end-to-end ABEP in closed-form for binary SSK, where analytical results agree with simulation results. For non-binary SSK, approximate analytical and simulation results are presented.
Resumo:
Different medium access control (MAC) layer protocols, for example, IEEE 802.11 series and others are used in wireless local area networks. They have limitation in handling bulk data transfer applications, like video-on-demand, videoconference, etc. To avoid this problem a cooperative MAC protocol environment has been introduced, which enables the MAC protocol of a node to use its nearby nodes MAC protocol as and when required. We have found on various occasions that specified cooperative MAC establishes cooperative transmissions to send the specified data to the destination. In this paper we propose cooperative MAC priority (CoopMACPri) protocol which exploits the advantages of priority value given by the upper layers for selection of different paths to nodes running heterogeneous applications in a wireless ad hoc network environment. The CoopMACPri protocol improves the system throughput and minimizes energy consumption. Using a Markov chain model, we developed a model to analyse the performance of CoopMACPri protocol; and also derived closed-form expression of saturated system throughput and energy consumption. Performance evaluations validate the accuracy of the theoretical analysis, and also show that the performance of CoopMACPri protocol varies with the number of nodes. We observed that the simulation results and analysis reflects the effectiveness of the proposed protocol as per the specifications.
Resumo:
Simple, universally adaptable techniques for fabricating conductive patterns are required to translate laboratory-scale innovations into low-cost solutions for the developing world. Silver nanostructures have emerged as attractive candidates for forming such conductive patterns. We report here the in situ formation of conductive silver-nanowire networks on paper, thereby eliminating the need for either cost-intensive ink formulation or substrate preparation or complex post-deposition sintering steps. Reminiscent of the photographic process of `salt printing', a desktop office printer was used to deposit desired patterns of silver bromide on paper, which were subsequently exposed to light and then immersed in a photographic developer. Percolating silver nanowire networks that conformally coated the paper fibres were formed after 10 min of exposure to light from a commercial halogen lamp. Thus, conductive and patterned films with sheet resistances of the order of 4 Omega/rectangle can be easily formed by combining two widely used processes - inkjet printing and photographic development.
Resumo:
The goal of this study is to investigate the applicability of different constitutive models for silicone networks using comprehensive multiaxial experimental tests, including non-equibiaxial mechanical tests which introduce differential constraints on the networks in the two orthogonal directions, on samples prepared using various crosslinking densities. Uniaxial stress-strain experiments show that a decrease in crosslinker amounts used in the preparation of silicone networks lead to more compliant material response as compared to that obtained using higher amounts of crosslinker. Biaxial data were used to obtain fits to the neo- Hookean, Mooney-Rivlin, Arruda-Boyce and the Edward-Vilgis slip-link constitutive models. Our results show that the slip-link model, based on separation of the individual contributions of chemical crosslinks and physical entanglements, is better at describing the stress-strain response of highly crosslinked networks at low stretches as compared to other constitutive models. Modulus obtained using the slip-link model for highly crosslinked networks agrees with experimentally determined values obtained using uniaxial tension experiments. In contrast, moduli obtained using coefficients to the other constitutive models underpredict experimentally determined moduli by over 40 %. However, the slip-link model did not predict the experimentally observed stiffening response at higher stretches which was better captured using the Arruda-Boyce model.
Resumo:
Content Distribution Networks (CDNs) are widely used to distribute data to large number of users. Traditionally, content is being replicated among a number of surrogate servers, leading to high operational costs. In this context, Peer-to-Peer (P2P) CDNs have emerged as a viable alternative. An issue of concern in P2P networks is that of free riders, i.e., selfish peers who download files and leave without uploading anything in return. Free riding must be discouraged. In this paper, we propose a criterion, the Give-and-Take (G&T) criterion, that disallows free riders. Incorporating the G&T criterion in our model, we study a problem that arises naturally when a new peer enters the system: viz., the problem of downloading a `universe' of segments, scattered among other peers, at low cost. We analyse this hard problem, and characterize the optimal download cost under the G&T criterion. We propose an optimal algorithm, and provide a sub-optimal algorithm that is nearly optimal, but runs much more quickly; this provides an attractive balance between running time and performance. Finally, we compare the performance of our algorithms with that of a few existing P2P downloading strategies in use. We also study the computation time for prescribing the strategy for initial segment and peer selection for the newly arrived peer for various existing and proposed algorithms, and quantify cost-computation time trade-offs.
Resumo:
Metabolism is a defining feature of life, and its study is important to understand how a cell works, alterations that lead to disease and for applications in drug discovery. From a systems perspective, metabolism can be represented as a network that captures all the metabolites as nodes and the inter-conversions among pairs of them as edges. Such an abstraction enables the networks to be studied by applying graph theory, particularly, to infer the flow of chemical information in the networks by identifying relevant metabolic pathways. In this study, different weighting schemes are used to illustrate that appropriately weighted networks can capture the quantitative cellular dynamics quite accurately. Thus, the networks now combine the elegance and simplicity of representation of the system and ease of analysing metabolic graphs. Metabolic routes or paths determined by this therefore are likely to be more biologically meaningful. The usefulness of the approach is demonstrated with two examples, first for understanding bacterial stress response and second for studying metabolic alterations that occurs in cancer cells.
Resumo:
The algebraic formulation for linear network coding in acyclic networks with the links having integer delay is well known. Based on this formulation, for a given set of connections over an arbitrary acyclic network with integer delay assumed for the links, the output symbols at the sink nodes, at any given time instant, is a F(p)m-linear combination of the input symbols across different generations, where F(p)m denotes the field over which the network operates (p is prime and m is a positive integer). We use finite-field discrete Fourier transform to convert the output symbols at the sink nodes, at any given time instant, into a F(p)m-linear combination of the input symbols generated during the same generation without making use of memory at the intermediate nodes. We call this as transforming the acyclic network with delay into n-instantaneous networks (n is sufficiently large). We show that under certain conditions, there exists a network code satisfying sink demands in the usual (nontransform) approach if and only if there exists a network code satisfying sink demands in the transform approach. When the zero-interference conditions are not satisfied, we propose three precoding-based network alignment (PBNA) schemes for three-source three-destination multiple unicast network with delays (3-S 3-D MUN-D) termed as PBNA using transform approach and time-invariant local encoding coefficients (LECs), PBNA using time-varying LECs, and PBNA using transform approach and block time-varying LECs. We derive sets of necessary and sufficient conditions under which throughputs close to n' + 1/2n' + 1, n'/2n' + 1, and n'/2n' + 1 are achieved for the three source-destination pairs in a 3-S 3-D MUN-D employing PBNA using transform approach and time-invariant LECs, and PBNA using transform approach and block time-varying LECs, where n' is a positive integer. For PBNA using time-varying LECs, we obtain a sufficient condition under which a throughput demand of n(1)/n, n(2)/n, and n(3)/n can be met for the three source-destination pairs in a 3-S 3-D MUN-D, where n(1), n(2), and n(3) are positive integers less than or equal to the positive integer n. This condition is also necessary when n(1) + n(3) = n(1) + n(2) = n where n(1) >= n(2) >= n(3).
Resumo:
Social insects provide an excellent platform to investigate flow of information in regulatory systems since their successful social organization is essentially achieved by effective information transfer through complex connectivity patterns among the colony members. Network representation of such behavioural interactions offers a powerful tool for structural as well as dynamical analysis of the underlying regulatory systems. In this paper, we focus on the dominance interaction networks in the tropical social wasp Ropalidia marginata-a species where behavioural observations indicate that such interactions are principally responsible for the transfer of information between individuals about their colony needs, resulting in a regulation of their own activities. Our research reveals that the dominance networks of R. marginata are structurally similar to a class of naturally evolved information processing networks, a fact confirmed also by the predominance of a specific substructure-the `feed-forward loop'-a key functional component in many other information transfer networks. The dynamical analysis through Boolean modelling confirms that the networks are sufficiently stable under small fluctuations and yet capable of more efficient information transfer compared to their randomized counterparts. Our results suggest the involvement of a common structural design principle in different biological regulatory systems and a possible similarity with respect to the effect of selection on the organization levels of such systems. The findings are also consistent with the hypothesis that dominance behaviour has been shaped by natural selection to co-opt the information transfer process in such social insect species, in addition to its primal function of mediation of reproductive competition in the colony.
Resumo:
In this paper, we consider an intrusion detection application for Wireless Sensor Networks. We study the problem of scheduling the sleep times of the individual sensors, where the objective is to maximize the network lifetime while keeping the tracking error to a minimum. We formulate this problem as a partially-observable Markov decision process (POMDP) with continuous stateaction spaces, in a manner similar to Fuemmeler and Veeravalli (IEEE Trans Signal Process 56(5), 2091-2101, 2008). However, unlike their formulation, we consider infinite horizon discounted and average cost objectives as performance criteria. For each criterion, we propose a convergent on-policy Q-learning algorithm that operates on two timescales, while employing function approximation. Feature-based representations and function approximation is necessary to handle the curse of dimensionality associated with the underlying POMDP. Our proposed algorithm incorporates a policy gradient update using a one-simulation simultaneous perturbation stochastic approximation estimate on the faster timescale, while the Q-value parameter (arising from a linear function approximation architecture for the Q-values) is updated in an on-policy temporal difference algorithm-like fashion on the slower timescale. The feature selection scheme employed in each of our algorithms manages the energy and tracking components in a manner that assists the search for the optimal sleep-scheduling policy. For the sake of comparison, in both discounted and average settings, we also develop a function approximation analogue of the Q-learning algorithm. This algorithm, unlike the two-timescale variant, does not possess theoretical convergence guarantees. Finally, we also adapt our algorithms to include a stochastic iterative estimation scheme for the intruder's mobility model and this is useful in settings where the latter is not known. Our simulation results on a synthetic 2-dimensional network setting suggest that our algorithms result in better tracking accuracy at the cost of only a few additional sensors, in comparison to a recent prior work.
Resumo:
In this paper, we propose an eigen framework for transmit beamforming for single-hop and dual-hop network models with single antenna receivers. In cases where number of receivers is not more than three, the proposed Eigen approach is vastly superior in terms of ease of implementation and computational complexity compared with the existing convex-relaxation-based approaches. The essential premise is that the precoding problems can be posed as equivalent optimization problems of searching for an optimal vector in the joint numerical range of Hermitian matrices. We show that the latter problem has two convex approximations: the first one is a semi-definite program that yields a lower bound on the solution, and the second one is a linear matrix inequality that yields an upper bound on the solution. We study the performance of the proposed and existing techniques using numerical simulations.