326 resultados para SOLID-STATE ELECTROCHEMILUMINESCENCE
Resumo:
Among the various Mn compounds, both MnO2 and Mn(OH)2 are electrochemically active in supercapacitor studies. MnO2 and Mn(OH)2 are simultaneously deposited, through a one-pot method, on the anode and cathode, respectively, of a galvanostatic electrolysis cell consisting of aqueous Mn(NO3)2 electrolyte. MnO2 and Mn(OH)2 coated stainless steel (SS) electrodes are found to exhibit a capacitive behavior with a high specific capacitance. MnO2/SS and Mn(OH)2/SS electrodes are used as the negative and positive electrodes, respectively, in assembling nonsymmetrical capacitors and testing. The results indicate that both Mn-based electrodes prepared simultaneously in a single electrolysis possess interesting electrochemical properties for supercapacitor application.
Resumo:
Interaction of tetrathiafulvalene (TTF) and tetracyanoethylene (TCNE) with few-layer graphene samples prepared by the exfoliation of graphite oxide (EG), conversion of nanodiamond (DG) and arc-evaporation of graphite in hydrogen (HG) has been investigated by Raman spectroscopy to understand the role of the graphene surface. The position and full-width at half maximum of the Raman G-band are affected on interaction with TTF and TCNE and the effect is highest with EG and least with HG. The effect of TTF and TCNE on the 2D-band is also maximum with EG. The magnitude of interaction between the donor/acceptor molecules varies in the same order as the surface areas of the graphenes. (C) 2009 Published by Elsevier B. V.
Resumo:
We present a technique for an all-digital on-chip delay measurement system to measure the skews in a clock distribution network. It uses the principle of sub-sampling. Measurements from a prototype fabricated in a 65 nm industrial process, indicate the ability to measure delays with a resolution of 0.5ps and a DNL of 1.2 ps.
Resumo:
[NiL2(NCS)2] (1) [L = 2-(aminomethyl)pyridine], [NiL02(NCS)2] (2) [(L0) = 2-(2-aminoethyl)pyridine and [NiL00 2(NCS)2] (3) [L00 = 2-(2-methylaminoethyl)pyridine] have been synthesized from solution. All the complexes possess trans geometry as is evident from solid state UV–Vis spectral study and X-ray single crystal structure analysis of complex 2 unambiguously proves trans geometry of the species.
Resumo:
Sr2FeMoO6 oxides exhibit a half-metallic ferromagnetic (HM-FM) ground state and peculiar magnetic and magnetotransport properties, which are interesting for applications in the emerging field of spintronics and attractive for fundamental research in the field of heavily correlated electron systems. Sr2FeWO6 is an insulator with an antiferromagnetic (I-AFM) ground state. The solid solutions Sr2FeMoxW1-xO6 also have peculiar properties-W doping enhances chemical order which allows stabilization of the HM-FM state; as the W content exceeds a certain value a metal to insulator transition (MIT) occurs. The role of W in determining the physical properties of Sr2FeMoxW1-xO6 systems has been a matter of intense investigation. This work deals with the problem of the structural and electronic changes related to the MIT from a local perspective by means of x-ray absorption spectroscopy (XAS). This technique allows one to probe in detail the local structure and electronic modifications around selected absorber ions (W, Mo, Fe and Sr in our case). The results of XAS analysis in the whole composition range (0 <= x <= 1), in the near edge (XANES) and extended (EXAFS) regions, demonstrate an abrupt change of the local structure around the Fe and Mo sites at the critical composition, x(c). This change represents the microstructural counterpart associated with the MIT. Conversely, the local structure and electronic configuration of W ions remain unaltered in the whole composition range, suggesting indirect participation of W in the MIT.
Resumo:
In this paper we present the resistivity data for Pr and Zn codoped compound Y1-xPrxBa2[Cu1-yZny](3)O7-delta with 0 < y < 0.1 and x = 0.0, 0.1 and 0.2. The data is analysed in terms of the superconducting critical temperature T-c, residual resistivity rho(0) and the resistivity slope d rho/dT corresponding to the linear rho-T region. It is found that for x = 0.1 Pr has a minimal influence on the in-plane processes for Zn impurity alone affecting slightly T-c and rho(0). The slope dp/dT becomes larger for 0.03 < y < 0.06 leading to larger depining effect and hence slower fall of T, as a function of y. For x = 0.2 there is a drastic change, rho(0) becomes abnormally large, d rho/dT becomes negative implying absence of depinning and a totally pinned charge stripes. Superconductivity vanishes at y = 0.03. It is concluded that for x = 0.2 Pr converts the system from overdoped to underdoped region leading to the universal superconductor-insulator transition.
Resumo:
Raman bandwidths and bandshapes of some molecular and ionic glasses have been investigated through the glass-transition region. Widths of both polarised and depolarised bands exhibit step-like changes during the glass transition. Molecular and ionic glasses differ with respect to the magnitude and the nature of variations in bandwidths and reorientational times. An attempt has been made to understand the changes in bandwidths around the glass-transition temperature.
Resumo:
Studies of valence bands and core levels of solids by photoelectron spectroscopy are described at length. Satellite phenomena in the core level spectra have been discussed in some detail and it has been pointed out that the intensity of satellites appearing next to metal and ligand core levels critically depends on the metal-ligand overlap. Use of photoelectron spectroscopy in investigating metal-insulator transitions and spin-state transitions in solids is examined. It is shown that relative intensities of metal Auger lines in transition metal oxides and other systems provide valuable information on the valence bands. Occurrence of interatomic Auger transitions in competition with intraatomic transitions is discussed. Applications of electron energy loss spectroscopy and other techniques of electron spectroscopy in the study of gas-solid interactions are briefly presented.
Resumo:
The peptide t-butyloxycarbonyl-α-aminoisobutyryl-L-prolyl-L-prolyl-N-methylamide has been shown to adopt an extended structure in the solid state. The Pro-Pro segment occurs in the poly-proline II conformation. On dissolution of single crystals at not, vert, similar 233°K, a single species corresponding to the all Image peptide backbone is observed by 270 MHz 1H NMR. On warming, Image to Image isomerization about the Pro-Pro bond is facilitated. Both Image (ψ not, vert, similar−50°) and Image (ψ not, vert, similar 130°) rotamers about the Pro3 Cα---CO bond are detectable in the Pro-Pro Image conformer, at low temperature. These observations demonstrate unambiguously the large differences in the solid state and solution conformations of a Pro-Pro sequence.
Resumo:
In order to investigate the factors determining the relative stabilities of layered perovskite and pyrochlore structures of transition metal oxides containing trivalent bismuth, several ternary and quaternary oxides have been investigated. While d0 cations stabilize the layered perovskite structure, cations containing partially-filled d orbitals (which suppress ferroelectric distortion of MO6 octahedra) seem to favor pyrochlore-related structures. Thus, the vanadium analogue of the layered perovskite Bi4Ti3O12 cannot be prepared; instead the composition consists of a mixture of pyrochlore-type Bi1.33V2O6, Bi2O3, and Bi metal. The distortion of Bi1.33V2O6 to orthorhombic symmetry is probably due to an ordering of anion vacancies in the pyrochlore structure. None of the other pyrochlores investigated, Bi2NbCrO7, Bi2NbFeO7, TlBiM2O7 (M = Nb, Ta), shows evidence for cation ordering in the X-Ray diffraction patterns, as indeed established by structure refinement of TlBiNb2O7.
Resumo:
X-ray absorpion near edge structure (xanes) of copper compounds with copper in 1+, 2+ and 3+ states has been studied. Extended x-ray absorption fine structure (exafs) has been employed to determine bond distances and coordination numbers in several model copper compounds. Employing bothxanes andexafs, the structure of the copper complex formed by the micro-organismPseudomonas aeruginosa has been shown to be square-planar with the Cu-O distance close to that in cupric glucuronates and cupric acetylacetonate.exafs has been shown to be useful for studying metal-metal bonds in copper carboxylates.
Resumo:
The Gibbs energy of formation of V2O3-saturated spinel CoV2O4 has been measured in the temperature range 900–1700 K using a solid state galvanic cell, which can be represented as Pt, Co + CoV2O4 + V2O3/(CaO) ZrO2/Co + CoO, Pt. The standard free energy of formation of cobalt vanadite from component oxides can be represented as CoO (rs) + V2O3 (cor) → CoV2O4 (sp), ΔG° = −30,125 − 5.06T (± 150) J mole−1. Cation mixing on crystallographically nonequivalent sites of the spinel is responsible for the decrease in free energy with increasing temperature. A correlation between “second law” entropies of formation of cubic 2–3 spinels from component oxides with rock salt and corundum structures and cation distribution is presented. Based on the information obtained in this study and trends in the stability of aluminate and chromite spinels, it can be deduced that copper vanadite is unstable.
Resumo:
Pressure transitions of Se-Te alloys have been studied over the entire range of compositions. Conductivities have also been measured as a function of temperature and alloy composition. Transition pressures, activation barriers and isothermal conductivities exhibit distinct changes of slope in their variation as a function of composition at about 8 at % of Te. Transition pressures change slope at not, vert, similar 35% Te also. An attempt has been made to explain these observations on the basis of the size effect of Te which, in turn, affects the electron energy dispersions in the band structure.
Resumo:
Infrared correlation functions, have been obtained from the analysis of band shapes of the 1400 cm−1 bending mode of NH4Cl, NH4Br and NH4I in both the Pm3m and Fm3m phases. The NH 4 + ion seems to undergo relatively free rotation in the high temperature Fm3m phases of these halides.