383 resultados para ELECTRICAL RESISTIVITY
Resumo:
The electrical transport behavior of n-n indium nitride nanodot-silicon (InN ND-Si) heterostructure Schottky diodes is reported here, which have been fabricated by plasma-assisted molecular beam epitaxy. InN ND structures were grown on a 20 nm InN buffer layer on Si substrates. These dots were found to be single crystalline and grown along [0 0 0 1] direction. Temperature-dependent current density-voltage plots (J-V-T) reveal that the ideality factor (eta) and Schottky barrier height (SBH) (Phi(B)) are temperature dependent. The incorrect values of the Richardson constant (A**) produced suggest an inhomogeneous barrier. Descriptions of the experimental results were explained by using two models. First one is barrier height inhomogeneities (BHIs) model, in which considering an effective area of the inhomogeneous contact provided a procedure for a correct determination of A**. The Richardson constant is extracted similar to 110 A cm(-2) K(-2) using the BHI model and that is in very good agreement with the theoretical value of 112 A cm(-2) K(-2). The second model uses Gaussian statistics and by this, mean barrier height Phi(0) and A** were found to be 0.69 eV and 113 A cm(-2) K(-2), respectively.
Resumo:
We have investigated thermal properties of bulk Si15Te85-xAgx (4 <= x <= 20) glasses in detail, through alternating differential scanning calorimetry experiments. The composition dependence of thermal parameters reveal the signatures of rigidity percolation and chemical threshold at compositions x = 12 and x = 19, respectively. The stability and glass forming ability of these glasses have also been determined using the data obtained from different thermodynamic quantities and it is found that the Si15Te85-xAgx glasses in the region 12 <= x <= 17 are more stable when compared to other glasses of the same series. Further, the blueshift observed in Raman spectroscopy investigations, in the composition range 12 <= x <= 13, support the occurrence of stiffness threshold in this composition range. All Si15Te85-xAgx (4 <= x <= 20) glasses are found to exhibit memory type switching (for sample thickness 0.25 mm) in the input current range 3-9 mA. The effect of rigidity percolation and chemical thresholds on switching voltages are observed at x = 12 and 19, respectively. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682759]
Resumo:
There is a lot of pressure on all the developed and second world countries to produce low emission power and distributed generation (DG) is found to be one of the most viable ways to achieve this. DG generally makes use of renewable energy sources like wind, micro turbines, photovoltaic, etc., which produce power with minimum green house gas emissions. While installing a DG it is important to define its size and optimal location enabling minimum network expansion and line losses. In this paper, a methodology to locate the optimal site for a DG installation, with the objective to minimize the net transmission losses, is presented. The methodology is based on the concept of relative electrical distance (RED) between the DG and the load points. This approach will help to identify the new DG location(s), without the necessity to conduct repeated power flows. To validate this methodology case studies are carried out on a 20 node, 66kV system, a part of Karnataka Transco and results are presented.
Resumo:
Treeing in low density polyethylene (LDPE) filled with alumina nanocomposite as well as unfilled LDPE samples stressed with 50 Hz ac voltage has been studied. The tree inception voltage was monitored for various samples with different nano-filler loadings and it is seen that there is an increase in tree inception voltage with filler loading in LDPE. Treeing pattern and tree growth duration for unfilled and nano-filled LDPE samples have also been studied. Different tree growth patterns as well as a slower tree growth with increase in filler loading in LDPE nanocomposites were observed. The observed slow propagation of tree growth with filler loading is attributed to the changes in the polymer crystalline morphology induced by the presence of nano-particles and the greater ability of the nanoparticles to resist discharge growth. SEM studies carried out to determine the morphology of unfilled and nano-filled LDPE showed an increase in lamellae packing in LDPE nanocomposites and this increased lamellar density leads to a reduction in the tree propagation rate. Partial discharge activities were also monitored during the electrical tree growth in both the unfilled and the nano-filled LDPE samples and were found to be significantly different. PD magnitude and the number of PD pulses per cycle were found to be lower with electrical tree growth duration in LDPE nanocomposites as compared to unfilled LDPE. The same trend was seen with increased filler loading also.
Resumo:
A Radio Frequency (RF) based digital data transmission scheme with 8 channel encoder/decoder ICs is proposed for surface electrode switching of a 16-electrode wireless Electrical Impedance Tomography (EIT) system. A RF based wireless digital data transmission module (WDDTM) is developed and the electrode switching of a EIT system is studied by analyzing the boundary data collected and the resistivity images of practical phantoms. An analog multiplexers based electrode switching module (ESM) is developed with analog multiplexers and switched with parallel digital data transmitted by a wireless transmitter/receiver (T-x/R-x) module working with radio frequency technology. Parallel digital bits are generated using NI USB 6251 card working in LabVIEW platform and sent to transmission module to transmit the digital data to the receiver end. The transmitter/receiver module developed is properly interfaced with the personal computer (PC) and practical phantoms through the ESM and USB based DAQ system respectively. It is observed that the digital bits required for multiplexer operation are sequentially generated by the digital output (D/O) ports of the DAQ card. Parallel to serial and serial to parallel conversion of digital data are suitably done by encoder and decoder ICs. Wireless digital data transmission module successfully transmitted and received the parallel data required for switching the current and voltage electrodes wirelessly. 1 mA, 50 kHz sinusoidal constant current is injected at the phantom boundary using common ground current injection protocol and the boundary potentials developed at the voltage electrodes are measured. Resistivity images of the practical phantoms are reconstructed from boundary data using EIDORS. Boundary data and the resistivity images reconstructed from the surface potentials are studied to assess the wireless digital data transmission system. Boundary data profiles of the practical phantom with different configurations show that the multiplexers are operating in the required sequence for common ground current injection protocol. The voltage peaks obtained at the proper positions in the boundary data profiles proved the sequential operation of multiplexers and successful wireless transmission of digital bits. Reconstructed images and their image parameters proved that the boundary data are successfully acquired by the DAQ system which in turn again indicates a sequential and proper operation of multiplexers as well as the successful wireless transmission of digital bits. Hence the developed RF based wireless digital data transmission module (WDDTM) is found suitable for transmitting digital bits required for electrode switching in wireless EIT data acquisition system. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Amorphous thin film Ge15Te85-xSnx (1 <= x <= 5) and Ge17Te83-xSnx (1 <= x <= 4) switching devices have been deposited in sandwich geometry using a flash evaporation technique, with aluminum as the top and bottom electrodes. Electrical switching studies indicate that these films exhibit memory type electrical switching behavior. The switching fields for both the series of samples have been found to decrease with increase in Sn concentration, which confirms that the metallicity effect on switching fields/voltages, commonly seen in bulk glassy chalcogenides, is valid in amorphous chalcogenide thin films also. In addition, there is no manifestation of rigidity percolation in the composition dependence of switching fields of Ge15Te85-xSnx and Ge17Te83-xSnx amorphous thin film samples. The observed composition dependence of switching fields of amorphous Ge15Te85-xSnx and Ge17Te83-xSnx thin films has been understood on the basis of Chemically Ordered Network model. The optical band gap for these samples, calculated from the absorption spectra, has been found to exhibit a decreasing trend with increasing Sn concentration, which is consistent with the composition dependence of switching fields.
Resumo:
This work focuses on the design of torsional microelectromechanical systems (MEMS) varactors to achieve highdynamic range of capacitances. MEMS varactors fabricated through the polyMUMPS process are characterized at low and high frequencies for their capacitance-voltage characteristics and electrical parasitics. The effect of parasitic capacitances on tuning ratio is studied and an equivalent circuit is developed. Two variants of torsional varactors that help to improve the dynamic range of torsional varactors despite the parasitics are proposed and characterized. A tuning ratio of 1:8, which is the highest reported in literature, has been obtained. We also demonstrate through simulations that much higher tuning ratios can be obtained with the designs proposed. The designs and experimental results presented are relevant to CMOS fabrication processes that use low resistivity substrate. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JMM.11.1.013006]
Resumo:
We address a physics-based simplified analytical formulation of the diffusive electrical resistance ( (Omega)) and Seebeck coefficient () in a PbTe nanowire dominated by acoustic phonon scattering under the presence of a low static longitudinal electric field. The use of a second-order nonparabolic electron energy band structure involving a geometry-dependent band gap has been selected in principle to demonstrate that the electron mean free path (MFP) in such a system can reach as low as about 8 nm at room temperature for a 10-nm-wide PbTe nanowire. This is followed by the formulation of the carrier back-scattering coefficient for determination of (Omega) and as functions of wire dimensions, temperature, and the field, respectively. The present analytical formulation agrees well with the available experimental data and may find extensive use in determination of various electrothermal transport phenomena in PbTe-based one-dimensional electron devices.
Resumo:
Electrical conductivity and Seebeck coefficient of calcium-doped YFeO3, a potential cathode material in solid oxide fuel cells (SOFC), are measured as function of temperature and composition in air to resolve conflicts in the literature both on the nature of conduction (n- or p-type) and the types of defects (majority and the minority) present. Compositions of Y1-xCaxFeO3-delta with x = 0.0, 0.025, 0.05 and 0.1 are studied in the temperature range from 625 to 1250 K. All Y1-xCaxFeO3-delta samples show p-type semiconducting behaviour. Addition of Ca up to 5% dramatically increases the conductivity of YFeO3; increase is more gradual up to 10%. A second phase Ca2Fe2O5 appears in the microstructure for Ca concentrations in excess of 11%.
Resumo:
Polyaniline (PANI) and PANI/CNT (multiwall carbon nanotubes, CNT) composites were prepared using an oxidative chemical polymerization method with ammonium persulfate and dodecyl benzene sulfonic acid as the oxidizing agent and surfactant, respectively. Fourier-transform infrared spectroscopy spectra illustrate the presence of PANI in the composite and show that some interaction exists between PANI and CNT. Embedding of CNT in the PANI matrix is confirmed by scanning electron micrography. Conductivity of the PANI/CNT composites was higher than that of pure PANI, and the maximum conductivity obtained was 4.44 S/cm at 20 wt.% CNT.
Resumo:
We have investigated electrical transport properties of long (>10 mu m) multiwalled carbon nanotubes (NTs) by dividing individuals into several segments of identical length. Each segment has different resistance because of the random distribution of defect density in an NT and is corroborated by Raman studies. Higher is the resistance, lower is the current required to break the segments indicating that breakdown occurs at the highly resistive segment/site and not necessarily at the middle. This is consistent with the one-dimensional thermal transport model. We have demonstrated the healing of defects by annealing at moderate temperatures or by current annealing. To strengthen our mechanism, we have carried out electrical breakdown of nitrogen doped NTs (NNTs) with diameter variation from one end to the other. It reveals that the electrical breakdown occurs selectively at the narrower diameter region. Overall, we believe that our results will help to predict the breakdown position of both semiconducting and metallic NTs. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4720426]
Resumo:
We have investigated the current-voltage characteristics of carbon nanotube arrays and shown that the current through the arrays increases rapidly with applied voltage before the breakdown occurs. Simultaneous measurements of current and temperature at one end of the arrays suggest that the rapid increase of current is due to Joule heating. The current through the array and the threshold voltage are found to increase with decreasing pressure. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3702777]
Resumo:
We report on the electrical transport properties of buckled carbon nanotube arrays synthesized by pyrolysis. Analyzing the experimental data based on the general theory of semiconductors, the arrays are predicted to be semiconducting and the band gap can be evaluated. The band gap of different arrays is in 25-50 meV range.
Resumo:
The temperature dependent electrical transport behavior of n-n InGaN/Si heterostructures grown by plasma-assisted MBE was studied. Structural characteristics of the as-grown InGaN epilayers were evaluated high resolution X-ray diffraction and composition of InGaN was estimated from photoluminescence spectra using standard Vegard's law. Current density-voltage plots (J-V-T) revealed that the ideality factor (eta) and Schottky barrier height (SBH) (Phi(b)) are temperature dependent and the incorrect values of the Richardson's constant (A**) produced, suggests an inhomogeneous barrier at the heterostructure interface. The higher value of the ideality factor compared to the ideal value and its temperature dependence suggest that the current transport is mainly dominated by thermionic field emission. (C) 2012 Elsevier B.V. All rights reserved.