393 resultados para Drug Stability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curcumin has shown promising therapeutic utilities for many diseases, including cancer; however, its clinical application is severely limited because of its poor stability under physiological conditions. Here we find that curcumin also loses its activity instantaneously in a reducing environment. Curcumin can exist in solution as a tautomeric mixture of keto and enol forms, and the enol form was found to be responsible for the rapid degradation of the compound. To increase the stability of curcumin, several analogues were synthesized in which the diketone moiety of curcumin was replaced by isoxazole (compound 2) and pyrazole (compound 3) groups. Isoxazole and pyrazole curcumins were found to be extremely stable at physiological pH, in addition to reducing atmosphere, and they can kill cancer cells under serum-depleted condition. Using molecular modeling, we found that both compounds 2 and 3 could dock to the same site of tubulin as the parent molecule, curcumin. Interestingly, compounds 2 and 3 also show better free radical scavenging activity than curcumin. Altogether, these results strongly suggest that compounds 2 and 3 could be good replacements for curcumin in future drug development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ni49.4Ti38.6Hf12 shape memory alloy has been characterized for structure, microstructure and transformation temperatures. The microstructure of the as-cast sample consists of B19' and R-phases, and (Ti,Hf)(2)Ni precipitate phase along the grain boundaries in the form of dendrites. The microstructure of the solution treated sample contains only B19' martensite phase, whereas a second heat treatment after solutionizing results in reappearance of the R-phase and the (Ti,Hf)(2)Ni grain boundary precipitate phase in the microstructure. A detailed microstructural examination shows the presence of precipitates having both coherent and incoherent interface with the matrix, the type of interface being dictated by the crystallographic orientation of the matrix phase. The present study shows that the (Ti,Hf)(2)Ni precipitates having coherent interface with the matrix, drive the formation of the R-phase in the microstructure. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple method to fabricate multifunctional polyelectrolyte thin films to load and deliver the therapeutic drugs. The multilayer thin films were assembled by the electrostatic adsorption of poly (allylamine hydrochloride) (PAH) and dextran sulfate (DS). The silver nanoparticles (Ag NPs) biosynthesized from novel Hybanthus enneaspermus leaf extract as the reducing agent were successfully incorporated into the film. The biosynthesized Ag NPs showed excellent antimicrobial activity against the range of enteropathogens, which could be significantly enhanced when used with commercial antibiotics. The assembled silver nano composite multilayer films showed rupture and deformation when they are exposed to laser. The Ag NPs act as an energy absorption center, locally heat up the film and rupture it under laser treatment. The antibacterial drug, moxifloxacin hydrochloride (MH) was successfully loaded into the multilayer films. The total amount of MH release observed was about 63% which increased to 85% when subjected to laser light exposure. Thus, the polyelectrolyte thin film reported in our study has significant potential in the field of remote activated drug delivery, antibacterial coatings and wound dressings. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a nanoparticle loading protocol to develop a transparent, multifunctional polyelectrolyte multilayer film for externally activated drug and protein delivery. The composite film was designed by alternate adsorption of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on a glass substrate followed by nanoparticle synthesis through a polyol reduction method. The films showed a uniform distribution of spherical silver nanoparticles with an average diameter of 50 +/- 20 nm, which increased to 80 +/- 20 nm when the AgNO3 concentration was increased from 25 to 50 mM. The porous and supramolecular structure of the polyelectrolyte multilayer film was used to immobilize ciprofloxacin hydrochloride (CH) and bovine serum albumin (BSA) within the polymeric network of the film. When exposed to external triggers such as ultrasonication and laser light the loaded films were ruptured and released the loaded BSA and CH. The release of CH is faster than that of BSA due to a higher diffusion rate. Circular dichroism measurements confirmed that there was no significant change in the conformation of released BSA in comparison with native BSA. The fabricated films showed significant antibacterial activity against the bacterial pathogen Staphylococcus aureus. Applications envisioned for such drug-loaded films include drug and vaccine delivery through the transdermal route, antimicrobial or anti-inflammatory coatings on implants and drug-releasing coatings for stents. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In aqueous binary mixtures, amphiphilic solutes such as dimethylsulfoxide (DMSO), ethanol, tertbutyl alcohol (TBA), etc., are known to form aggregates (or large clusters) at small to intermediate solute concentrations. These aggregates are transient in nature. Although the system remains homogeneous on macroscopic length and time scales, the microheterogeneous aggregation may profoundly affect the properties of the mixture in several distinct ways, particularly if the survival times of the aggregates are longer than density relaxation times of the binary liquid. Here we propose a theoretical scheme to quantify the lifetime and thus the stability of these microheterogeneous clusters, and apply the scheme to calculate the same for water-ethanol, water-DMSO, and water-TBA mixtures. We show that the lifetime of these clusters can range from less than a picosecond (ps) for ethanol clusters to few tens of ps for DMSO and TBA clusters. This helps explaining the absence of a strong composition dependent anomaly in water-ethanol mixtures but the presence of the same in water-DMSO and water-TBA mixtures. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The ability to target conventional drugs efficiently inside cells to kill intraphagosomal bacteria has been a major hurdle in treatment of infective diseases. We aimed to develop an efficient drug delivery system for combating infection caused by Salmonella, a well-known intracellular and intraphagosomal pathogen. Chitosan dextran sulphate (CD) nanocapsules were assessed for their efficiency in delivering drugs against Salmonella. Methods: The CD nanocapsules were prepared using the layer-by-layer method and loaded with ciprofloxacin or ceftriaxone. Antibiotic-loaded nanocapsules were analysed in vitro for their ability to enter epithelial and macrophage cells to kill Salmonella. In vivo pharmacokinetics and organ distribution studies were performed to check the efficiency of the delivery system. The in vivo antibacterial activity of free antibiotic and antibiotic loaded into nanocapsules was tested in a murine salmonellosis model. Results: In vitro and in vivo experiments showed that this delivery system can be used effectively to clear Salmonella infection, CD nanocapsules were successfully employed for efficient targeting and killing of the intracellular pathogen at a dosage significantly lower than that of the free antibiotic. The increased retention time of ciprofloxacin in the blood and organs when it was delivered by CD nanocapsules compared with the conventional routes of administration may be the reason underlying the requirement for a reduced dosage and frequency of antibiotic administration. Conclusions: CD nanocapsules can be used as an efficient drug delivery system to treat intraphagosomal pathogens, especially Salmonella infection, This delivery system might be used effectively for other vacuolar pathogens including Mycobacteria, Brucella and Legionella.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an ab initio design and development of a novel Fiber Bragg Grating (FBG) sensor based strain sensing plate for the measurement of plantar strain distribution in human foot. The primary aim of this work is to study the feasibility of usage of FBG sensors in the measurement of plantar strain in the foot; in particular, to spatially resolve the strain distribution in the foot at different regions such as fore-foot, mid-foot and hind-foot. This study also provides a method to quantify and compare relative postural stability of different subjects under test; in addition, traditional accelerometers have been used to record the movements of center of gravity (second lumbar vertebra) of the subject and the results obtained have been compared against the outcome of the postural stability studies undertaken using the developed FBG plantar strain sensing plate. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of two long unsupported circular parallel tunnels aligned horizontally in fully cohesive and cohesive-frictional soils has been determined. An upper bound limit analysis in combination with finite elements and linear programming is employed to perform the analysis. For different clear spacing (S) between the tunnels, the stability of tunnels is expressed in terms of a non-dimensional stability number (gamma H-max/c); where H is tunnel cover, c refers to soil cohesion, and gamma(max) is maximum unit weight of soil mass which the tunnels can bear without any collapse. The variation of the stability number with tunnels' spacing has been established for different combinations of H/D, m and phi; where D refers to diameter of each tunnel, phi is the internal friction angle of soil and m accounts for the rate at which the cohesion increases linearly with depth. The stability number reduces continuously with a decrease in the spacing between the tunnels. The optimum spacing (S-opt) between the two tunnels required to eliminate the interference effect increases with (i) an increase in H/D and (ii) a decrease in the values of both m and phi. The value of S-opt lies approximately in a range of 1.5D-3.5D with H/D = 1 and 7D-12D with H/D = 7. The results from the analysis compare reasonably well with the different solutions reported in literature. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aptamers, and the selection process known as Systematic Evolution of Ligands by Exponential Enrichment (SELEX) used to generate them, were first described more than twenty years ago. Since then, there have been numerous modifications to the selection procedures. This review discusses the use of modified bases as a means of enhancing serum stability and producing effective therapeutic tools, as well as functionalising these nucleic acids to be used as potential diagnostic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wobble instability is one of the major problems of a three-wheeled vehicle commonly used in India, and these instabilities are of great interest to industry and academia. In this paper, we studied this instability using a multi-body dynamic model and with experiments conducted on a prototype three-wheeled vehicle on a test track. The multi-body dynamic model of a three-wheeled vehicle is developed using the commercial software ADAMS/Car. In an initial model, all components including main structures such as the frame, the steering column and the rear forks are assumed to be rigid bodies. A linear eigenvalue analysis, which is carried out at different speeds, reveals a mode that has predominantly a steering oscillation, also called a wobble mode, with a frequency of around 5-6Hz. The analysis results shows that the damping of this mode is low but positive up to the maximum speed of the three-wheeled vehicle. However, the experimental study shows that the mode is unstable at speeds below 8.33m/s. To predict and study this instability in detail, a more refined model of the three-wheeled vehicle, with flexibilities of three important bodies, was constructed in ADAMS/Car. With flexible bodies, three modes of a steering oscillation were observed. Two of these are well damped and the other is lightly damped with negative damping at lower speeds. Simulation results with flexibility incorporated show a good match with the instability observed in the experimental studies. Further, we investigated the effect of each flexible body and found that the flexibility of the steering column is the major contributor for wobble instability and is similar to the wheel shimmy problem in aircraft.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present herein a short tripeptide sequence (Lys-Phe-Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self-assembles in water and shows a reversible and concentration-dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH7.4 but rupture rapidly at pH approximate to 6. The pH-sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug-sensitive and drug-resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence-activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme SAICAR synthetase ligates aspartate with CAIR (5'-phosphoribosyl-4-carboxy-5-aminoimidazole) forming SAICAR (5-amino-4-imidazole-N-succinocarboxamide ribonucleotide) in the presence of ATP. In continuation with our previous study on the thermostability of this enzyme in hyper-/thermophiles based on the structural aspects, here, we present the dynamic aspects that differentiate the mesophilic (E. coli, E. chaffeensis), thermophilic (G. kaustophilus), and hyperthermophilic (M. jannaschii, P. horikoshii) SAICAR synthetases by carrying out a total of 11 simulations. The five functional dimers from the above organisms were simulated using molecular dynamics for a period of 50 ns each at 300 K, 363 K, and an additional simulation at 333 K for the thermophilic protein. The basic features like root-mean-square deviations, root-mean-square fluctuations, surface accessibility, and radius of gyration revealed the instability of mesophiles at 363 K. Mean square displacements establish the reduced flexibility of hyper-/thermophiles at all temperatures. At the simulations time scale considered here, the long-distance networks are considerably affected in mesophilic structures at 363 K. In mesophiles, a comparatively higher number of short-lived (having less percent existence time) C alpha, hydrogen bonds, hydrophobic interactions are formed, and long-lived (with higher percentage existence time) contacts are lost. The number of time-averaged salt-bridges is at least 2-fold higher in hyperthermophiles at 363 K. The change in surface accessibility of salt-bridges at 363 K from 300 K is nearly doubled in mesophilic protein compared to proteins from other temperature classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal degradation of poly(n-butyl methacrylate-co-alkyl acrylate) was compared with ultrasonic degradation. For this purpose, different compositions of poly (n-butyl methacrylate-co-methyl acrylate) (PBMAMA) and a particular composition of poly(n-butyl methacrylate-co-ethyl acrylate) (PBMAEA) and poly(n-butyl methacrylate-co-butyl acrylate) (PBMABA) were synthesized and characterized. The thermal degradation of polymers shows that the poly(alkyl acrylates) degrade in a single stage by random chain scission and poly(n-butyl methacrylate) degrades in two stages. The number of stages of thermal degradation of copolymers was same as the majority component of the copolymer. The activation energy corresponding to random chain scission increased and then decreased with an increase of n-butyl methacrylate fraction in copolymer. The effect of methyl acrylate content, alkyl acrylate substituent, and solvents on the ultrasonic degradation of these copolymers was investigated. A continuous distribution kinetics model was used to determine the degradation rate coefficients. The degradation rate coefficient of PBMAMA varied nonlinearly with n-butyl methacrylate content. The degradation of poly (n-butyl methacrylate-co-alkyl acrylate) followed the order: PBMAMA < PBMAEA < PBMABA. The variation in the degradation rate constant with composition of the copolymer was discussed in relation to the competing effects of the stretching of the polymer in solution and the electron displacement in the main chain. (C) 2012 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper reports phase evolution in mechanically driven Ag-15 at. pct Sn alloy powder starting with elemental powders in order to establish the feasibility of designing nanocomposites of a Ag-Sn solid solution. This alloy lies in the phase field of the hexagonal zeta-phase which is a well-known Hume-Rothery electron compound with an electron-to-atom ratio of about 1.45 and hexagonal crystal structure (a = 0.2966 nm, c = 0.4782 nm). Through a systematic use of X-ray diffraction and transmission electron microscopy, the results establish the formation of the zeta-phase which co-exists with the Ag solid solution during the initial phase of milling. Mechanical milling for long duration (55 hours) destabilizes the zeta-phase. A complete solid solution of Ag with a grain size of similar to 8 nm could be achieved after 60 hours of milling. Additional milling can induce decomposition of the solid solution that results in a reappearance of zeta-phase. We present a detailed thermodynamic calculation which indicates that complete Ag solid solution of the present alloy composition would be possible if the crystallites size can be reduced below a certain critical size. In particular, we show that both Ag and zeta-phase grain sizes need to be taken into account for determining the metastable equilibrium and the phase change that has been experimentally observed. Finally, we argue that recrystallization processes set a limit to the achievable size of the nanoparticles with metastable Ag solid solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new voltage stability index based on the tangent vector of the power flow jacobian. This index is capable of providing the relative vulnerability information of the system buses from the point of view of voltage collapse. In an effort to compare this index with a similar index, the popular voltage stability index L is studied and it is shown through system studies that the L index is not a very consistent indicator of the voltage collapse point of the system but is only a reasonable indicator of the vulnerability of the system buses to voltage collapse. We also show that the new index can be used in the voltage stability analysis of radial systems which is not possible with the L index. This is a significant result of this investigation since there is a lot of contemporary interest in distributed generation and microgrids which are by and large radial in nature. Simulation results considering several test systems are provided to validate the results and the computational needs of the proposed scheme is assessed in comparison with other schemes