331 resultados para Basic-protein


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sesbania mosaic virus (SMV) is a plant virus that infects Sesbania grandiflora plants in Andhra Pradesh, India. The amino acid sequence of the coat protein of SMV was determined using purified peptides generated by cleavage with trypsin, chymotrypsin, V8 protease and clostripain. The 230 residues so far determined were compared to the corresponding residues of southern bean mosaic virus (SBMV), the type member of sobemoviruses. The overall identity between the sequences is 61.7%. The amino terminal 64 residues, which constitute an independent domain (R-domain) known to interact with RNA, are conserved to a lower extent (52.5%). Comparison of the positively charged residues in this domain suggests that the RNA-protein interactions are considerably weaker in SMV. The residues that constitute the major domain of the coat protein, the surface domain (S-domain, residues 65-260), are better conserved (66.5%). The positively charged residues of this domain that face the nucleic acid are well conserved. The longest conserved stretch of residues (131-142) corresponds to the loop involved in intersubunit interactions between subunits related by the quasi 3-fold symmetry. A unique cation binding site located on the quasi 3-fold axis contributes to the stability of SMV. These differences are reflected in the increased stability of the SMV coat protein and its ability to be reconstituted with RNA at pH 7.5. A major epitope was identified using monoclonal antibodies to SMV in the segment 201-223 which contains an exposed helix in the capsid structure. This region is highly conserved between SMV and SBMV (70%) suggesting that it could represent the site of an important function such as vector recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our ability to infer the protein quaternary structure automatically from atom and lattice information is inadequate, especially for weak complexes, and heteromeric quaternary structures. Several approaches exist, but they have limited performance. Here, we present a new scheme to infer protein quaternary structure from lattice and protein information, with all-around coverage for strong, weak and very weak affinity homomeric and heteromeric complexes. The scheme combines naive Bayes classifier and point group symmetry under Boolean framework to detect quaternary structures in crystal lattice. It consistently produces >= 90% coverage across diverse benchmarking data sets, including a notably superior 95% coverage for recognition heteromeric complexes, compared with 53% on the same data set by current state-of-the-art method. The detailed study of a limited number of prediction-failed cases offers interesting insights into the intriguing nature of protein contacts in lattice. The findings have implications for accurate inference of quaternary states of proteins, especially weak affinity complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATP gamma S, an analogue of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKII with ATP binding the catalytic site first followed by peptide substrate. We also show that dephosphorylation of phospho-Thr(286)-alpha-CaMKII is attenuated when NR2B is bound to CaMKII. This favors the persistence of Thr(286) autophosphorylated state of CaMKII in a CaMKII/phosphatase conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKII attains unique biochemical properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A successful protein-protein docking study culminates in identification of decoys at top ranks with near-native quaternary structures. However, this task remains enigmatic because no generalized scoring functions exist that effectively infer decoys according to the similarity to near-native quaternary structures. Difficulties arise because of the highly irregular nature of the protein surface and the significant variation of the nonbonding and solvation energies based on the chemical composition of the protein-protein interface. In this work, we describe a novel method combining an interface-size filter, a regression model for geometric compatibility (based on two correlated surface and packing parameters), and normalized interaction energy (calculated from correlated nonbonded and solvation energies), to effectively rank decoys from a set of 10,000 decoys. Tests on 30 unbound binary protein-protein complexes show that in 16 cases we can identify at least one decoy in top three ranks having <= 10 angstrom backbone root mean square deviation from true binding geometry. Comparisons with other state-of-art methods confirm the improved ranking power of our method without the use of any experiment-guided restraints, evolutionary information, statistical propensities, or modified interaction energy equations. Tests on 118 less-difficult bound binary protein-protein complexes with <= 35% sequence redundancy at the interface showed that in 77% cases, at least 1 in 10,000 decoys were identified with <= 5 angstrom backbone root mean square deviation from true geometry at first rank. The work will promote the use of new concepts where correlations among parameters provide more robust scoring models. It will facilitate studies involving molecular interactions, including modeling of large macromolecular assemblies and protein structure prediction. (C) 2010 Wiley Periodicals, Inc. J Comput Chem 32: 787-796, 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactions of hexachlorocyclodiphosphazane [MeNPCl3]2 with primary aromatic amines afforded the bisphosphinimine hydrochlorides [(RNH)2(RN)PN(Me)P(NHMe)(NHR)2]+Cl- (R = Ph 1, C6H4Me-4 2 or C6H4OMe-4 3). Dehydrochlorination of 2 and 3 by methanolic KOH yielded highly basic bisphosphinimines [(RNH)2(RN)PN(Me)P(NMe)(NHR)2] (R = C6H4Me-4 4 or C6H4OMe-4 5). Compounds 1-5 have been characterised by elemental analysis and IR and NMR (H-1, C-13, P-31) spectroscopy. The structure of 2 has been confirmed by single-crystal X-ray diffraction. The short P-N bond lengths and the conformations of the PN, units can be explained on the basis of cumulative negative hyperconjugative interactions between nitrogen lone pairs and adjacent P-N sigma* orbitals. Ab initio calculations on the model phosphinimine (H2N)3P=NH and its protonated form suggest that (amino)phosphinimines would be stronger bases compared to many organic bases such as guanidine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural proteins of mycobacteriophage I3 have been analysed by sodium dodecyl sulfate-polyacrylamide-gel electrophoresis (SDS-PAGE), radioiodination and immunoblotting. Based on their abundance the 34- and 70-kDa bands appeared to represent the major structural proteins. Successful cloning and expression of the 70-kDa protein-encoding gene of phage I3 in Escherichia coli and its complete nucleotide sequence determination have been accomplished, A second (partial) open reading frame following the stop codon for the 70-kDa protein was also identified within the cloned fragment. The deduced amino-acid sequence of the 70-kDa protein and the codon usage patterns indicated the preponderance of codons, as predicted from the high G+C content of the genomic DNA of phage I3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peste des petits ruminants (PPR) is an acute, highly contagious disease of small ruminants caused by a morbillivirus, Peste des petits ruminants virus (PPRV). The disease is prevalent in equatorial Africa, the Middle East, and the Indian subcontinent. A live attenuated vaccine is in use in some of the countries and has been shown to provide protection for at least three years against PPR. However, the live attenuated vaccine is not robust in terms of thermotolerance. As a step towards development of a heat stable subunit vaccine, we have expressed a hemagglutinin-neuraminidase (HN) protein of PPRV in peanut plants (Arachis hypogea) in a biologically active form, possessing neuraminidase activity. Importantly. HN protein expressed in peanut plants retained its immunodominant epitopes in their natural conformation. The immunogenicity of the plant derived HN protein was analyzed in sheep upon oral immunization. Virus neutralizing antibody responses were elicited upon oral immunization of sheep in the absence of any mucosal adjuvant. In addition, anti-PPRV-HN specific cell-mediated immune responses were also detected in mucosally immunized sheep. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epitopic core sequences recognized by three monoclonal antibodies raised to chicken riboflavin carrier protein (RCP) were mapped to the C-terminal tail-end of the protein using the pepscan method A 21-residue synthetic peptide corresponding to residues 200-219 of the protein and comprising the regions corresponding to the antibodies was synthesized. Administration of polyclonal antibodies specific to this peptide led to termination of early pregnancy in mice. Also, active immunization of rats with the peptide-purified protein derivative conjugate inhibited establishment of pregnancy. These results demonstrate the functional importance of the C-terminal 200-219 region of chicken RCP. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta protein, a key component of Red-pathway of phage lambda is necessary for its growth and general genetic recombination in recombination-deficient mutants of Escherichia coli. To facilitate studies on structure-function relationships, we overexpressed beta protein and purified it to homogeneity. A chemical cross-linking reagent, glutaraldehyde, was used to stabilize the physical association of beta protein in solution. A 67-kDa band, corresponding to homodimer, was identified after separation by SDS-polyacrylamide gel electrophoresis. Stoichiometric measurements indicated a site-size of 1 monomer of beta protein/5 nucleotide residues. Electrophoretic gel mobility shift assays suggested that beta protein formed stable nucleoprotein complexes with 36-mer, but not with 27- or 17-mer DNA. Interestingly, the interaction of beta protein with DNA and the stability of nucleoprotein complexes was dependent on the presence of MgCl2, and the binding was abolished by 250 mM NaCl. The K-d of beta protein binding to 36-mer DNA was on the order of 1.8 x 10(-6) M. Photochemical cross-linking of native beta protein or its fragments, generated by chymotrypsin, to 36-mer DNA was performed to identify its DNA-binding domain. Characterization of the cross-linked peptide disclosed that amino acids required for DNA-binding specificity resided within a 20-kDa peptide at the N-terminal end. These findings provide a basis for further understanding oi the structure and function of beta protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A specific protein exhibiting immunological cross-reactivity with chicken riboflavin carrier protein has been purified to homogeneity from human amniotic fluid by use of ion-exchange and affinity chromatography. The protein is similar to its avian counterpart in terms of molecular size, distribution of 125I-labelled tryptic peptides during finger printing, and preferential binding to riboflavin. Immunologically, they are homologous since most of the monoclonal antibodies raised against the avian protein cross-react with the purified human vitamin carrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoclonal antibodies (mAbs) to chicken thiamin carrier protein (TCP) have been produced by hybridoma technology to identify the crucial epitopes involved in bioneutralization of the vitamin carrier. The monoclonality of these mAbs (A4C4, F3H6, H8H3, C8C1 and G7H10) was sought to be confirmed by sub-class isotyping; they all belong to IgG1, k type. The epitopes recognized by all the five mAbs are conserved in TCP from the chicken to the rat as assessed by liquid phase RIA and immunoprecipitation of I-125-labelled proteins from pregnant rat serum. Among these mAbs, passive immunization of pregnant rats with the mAb C8C1 only on three consecutive days (day 10, 11 and 12) resulted in embryonic resorption. These results demonstrate the importance of epitopic structure specified by the mAb C8C1 on TCP during pregnancy in rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult rat Leydig cells in culture synthesize and secrete riboflavin carrier protein (RCP) as demonstrated by [S-35]-methionine incorporation into newly synthesized proteins followed by immunoprecipitation as well as specific radioimmunoassay. LH stimulates the secretion of RCP 4-fold which could be inhibited upto 75% by an aromatase inhibitor. 8-bromo-cyclic AMP and cholera toxin could mimic the LH stimulated secretion of the carrier protein. The extent of stimulation of RCP secretion brought about by exogenous estradiol-17 beta is comparable to that of LH. The antiestrogen tamoxifen, when added along with either LH or estrogen, inhibited the stimulated levels significantly. These results show that the estrogen-inducible riboflavin carrier is secreted by Leydig cells under positive regulation of LH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In attempts to convert an elongator tRNA to an initiator tRNA, we previously generated a mutant elongator methionine tRNA carrying an anticodon sequence change from CAU to CUA along with the two features important for activity of Escherichia coli initiator tRNA in initiation. This mutant tRNA (Mi:2 tRNA) was active in initiation in vivo but only when aminoacylated with methionine by overproduction of methionyl-tRNA synthetase. Here we show that the Mi:2 tRNA is normally aminoacylated in vivo with lysine and that the tRNA aminoacylated with lysine is a very poor substrate for formylation compared with the same tRNA aminoacylated with methionine. By introducing further changes at base pairs 4:69 and 5:68 in the acceptor stem of the Mi:2 tRNA to those found in the E. coli initiator tRNA, we show that change of the U4:A69 base pair to G4:C69 and overproduction of lysyl-tRNA synthetase and methionyl-tRNA transformylase results in partial formylation of the mutant tRNA and activity of the formyllysyl-tRNAs in initiation of protein synthesis. Thus, the G4:C69 base pair contributes toward formylation of the tRNA and protein synthesis in E. coli can be initiated with formyllysine. We also discuss the implications of these and other results on recognition of tRNAs by E. coli lysyl-tRNA synthetase and on competition in cells among aminoacyl-tRNA synthetases.