425 resultados para Antigen 5
Resumo:
Degradation of the tolyl group in the tricyclic ketone 1b followed by stereospecific reduction of the resultant ketoester (6) furnishes the title compound (4) containing a new tetracyclic framework, establishing the stereochemistry of the aryl group in 1.
Resumo:
The three dimensional structures of 8-bromo 2',3',5' triacetyl adenosine (8-Br Tri A) and 8-bromo 2',3',5'-triacetyl guanosine (8-Br Tri G) have been determined by single crystal X-ray diffraction methods to study the combined effect of bromine and acetyl substitutions on molecular conformation and interactions. The ribose puckers differ from those found in unbrominated Tri A and Tri G and unacetylated 8-Br A and 8-Br G analogues
Resumo:
Scheelite type solid electrolytes, Li(0.5)Ce(0.5-x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm) have been synthesized using a solid state method. Their structure and ionic conductivity (a) were obtained by single crystal X-ray diffraction and ac-impedance spectroscopy, respectively. X-ray diffraction studies reveal a space group of I4(1)/a for Li(0.5)Ce(0.5-x)Ln(x)MoO(4) (x = 0 and 0.25, Ln = Pr, Sm) scheelite compounds. The unsubstituted Li0.5Ce0.5MoO4 showed lithium ion conductivity similar to 10(-5)-10(-3) Omega(-1)cm(-1) in the temperature range of 300-700 degrees C (sigma = 2.5 x 10(-3) Omega(-1) cm(-1) at 700 degrees C). The substituted compounds show lower conductivity compared to the unsubstituted compound, with the magnitude of ionic conductivity being two (in the high temperature regime) to one order (in the low temperature regime) lower than the unsubstituted compound. Since these scheelite type structures show significant conductivity, the series of compounds could serve in high temperature lithium battery operations.
Resumo:
The presence of two (4n+2)-electron conjugated systems in perpendicular planes results in considerable aromatic stabilization. Despite having two fewer hydrogens, the 6 pi e-2 sigma e 3,5-dehydrophenyl cation (C6H3+, 1) is 32.7 (CCSD(T)/6-31G**) and 35.2 kcal/mol (RMP4sdtq/6-3iG*//RMP2(fu)/6-31G*) more stable than the phenyl cation (evaluated by an isodesmic reaction involving benzene and m-dehydrobenzene (4)). Cation 1, the global C6H3+ minimum, is 11.7,24.2, 11.8, and 30.4 kcal/mol lower in energy than the 2,6- (11) and 3,4-dehydrophenyl (12) cations as well as the open-chain isomers 13 and 14 (RMP4sdtq/6-31G*//RMP2(fu)/6-31G* + ZPE(RMP2(fu)/6-31G*)). The stability of 1 is increased hyperconjugatively by 2,4,6-trisilyl substitution. The double aromaticity of 1 is indicated by the computed magnetic susceptibility exaltations (IGLO/II//RMP2(fu)/6-31G*) of -5.2, -6.8, -15, and -23.2 relative to 11, 12, 13, and 14, respectively. Thus, 1 fulfills the geometric, energetic, and magnetic criteria of aromaticity. The double aromaticity of the D-6h cyclo[6]carbon is apparent from the same criteria
Resumo:
The conformation of 5-bromocytidine 5'-monophosphate in the title compound, Na+.C9H11BrN3O8P-.1.25H2O, is anti, C(3')-endo and gauche-gauche, similar to that in analogous non-halogenated nucleosides/nucleotides. The Na ion coordinates directly with phosphate O atoms and base atoms. Br is not involved in any stacking interaction.
Resumo:
EcoP15I DNA methyltransferase (Mtase) recognizes the asymmeteric sequence CAGCAG and catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the second adenine residue. We have investigated the DNA binding properties of EcoP15I DNA Mtase using gel mobility shift assays. EcoP15I DNA Mtase binds approximately threefold more tightly to DNA containing its recognition sequence, CAGCAG, than to non-specific sequences in the absence or presence of cofactors. Interestingly, in the presence of ATP the discrimination between specific and non-specific sequences increases significantly. These results suggest for the first time a role for ATP in DNA recognition by type III restriction-modification enzymes. In addition, we have shown that bromodeoxyuridine-containing oligonucleotides form complexes with EcoP15I DNA Mtase that are crosslinked upon irradiation. More importantly, we have shown that the crosslink site is at the site of DNA binding, since it can be suppressed by an excess of unmodified oligonucleotide. EcoP15I DNA Mtase exhibited Michaelis-Menten kinetics with both unmodified and bromodeoxyuridine-substituted DNA, with a higher specificity constant for the latter. Furthermore, gel mobility shift assays showed that proteolyzed EcoP15I DNA Mtase formed a specific complex with DNA, which had similar mobility as the native protein-DNA complex. Taken together these results form the basis fora detailed structure-function analysis of EcoP15I DNA Mtase.
Resumo:
The variation of the linear electro-optic effect in (-)-2-(alpha-methylbenzylamino)-5-nitropyridine with the wavelength of the incident light at room temperature has been measured. The reduced half-wave voltages have been found to have the values 2.1, 2.8, and 6.0 kV at 488, 514.5, and 632.8 nm respectively and the corresponding values of the linear electro-optic coefficient have been evaluated.;The interpretation of the results in terms of the structures of the molecule and the crystal is discussed. The thermal variation of the birefringence has also been investigated and the coefficient for the temperature variation of the refractive index difference is found to have the value (d Delta n/dT)=9.3X10(-5) K-1.
Resumo:
Potassamide induced in situ benzylation of 1-alkyl-4-cyano-3-methoxy-5,6-dihydroisoquinolines (1a-b) with benzyl iodide gave the 5-benzyl-, 5,9-dibenzyl- and 4,4-dibenzyl-5,6-dihydroisoquinolines (9a-b, 8a-b and 10a-b), isoquinoline derivatives (4a-b) and diastereomeric mixture of 4-benzyl-1,2,3,4-tetrahydroisoquinolin-3(2H)-ones (11a-b & 11'a-b). Structures were assigned on the basis of spectral data [Mass, H-1 & C-13 NMR, 2D NOESY]. A few reactions carried out to transform the diastereomeric mixture of compounds 11a and 11's to the spirobenzylisoquinoline system 7a isomeric with naturally occurring ochotensane system ga are discussed.
Resumo:
In the present study, we report for the first time the efficacy of recombinant Bm95 mid gut antigen isolated from an Argentinean strain of Rhipicephalus microplus strain A in controlling the tick infestations in India. The synthetic gene for Bm95 optimized for expression in yeast was obtained and used to generate yeast transformants expressing Bm95 which was purified to apparent homogeneity. Liquid chromatography-mass spectrometry analysis of the purified protein confirmed its identity as Bm95. Vaccine was prepared by blending various concentrations of purified Bm95 with aluminium hydroxide as an adjuvant. lmmunogenicity studies of the vaccine in rabbits and cattle indicated that the vaccine was highly immunogenic. The efficacy studies of the vaccine was done in cattle. Naive Bos indicus cattle were vaccinated with the recombinant vaccine and were challenged with the larval, nymphal and adult forms of Rhiphicephalus haemaphysaloides. The vaccine protected the animals from larval, nymph and adult tick challenges with an efficacy of 98.7%, 84.6% and 78.9% respectively. The results obtained from the above studies clearly demonstrated the advantage and possibilities of the use of Bm95 in controlling R. haemaphysaloides infestations in the field. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Biotransformation of 3 beta-acetoxy-19-hydroxycholest-5-ene (19-HCA, 6 g) by Moraxella sp. was studied. Estrone (712 mg) was the major metabolite formed. Minor metabolites identified were 5 alpha-androst-1-en-19-ol-3,17-dione (33 mg), androst-4-en-19-ol-3,17-dione (58 mg), androst-4-en-9 alpha,19-diol-3,17-dione (12 mg), and androstan-19-ol-3,17-dione (1 mg). Acidic metabolites were not formed. Time course experiments on the fermentation of 19-HCA indicated that androst-4-en-19-ol-3,17-dione was the major metabolite formed during the early stages of incubation. However with continuing fermentation its level dropped, with a concomitant increase in estrone. Fermentation of 19-HCA in the presence of specific inhibitors or performing the fermentation for a shorter period (48 h) did not result in the formation of acidic metabolites. Resting-cell experiments carried out with 19-HCA (200 mg) in the presence of alpha,alpha'-bipyridyl led to the isolation of three additional metabolites, viz., cholestan-19-ol-3-one (2 mg), cholest-4-en-19-ol-3-one (10 mg), and cholest-5-en-3 beta,19-diol (12 mg). Similar results were also obtained when n-propanol was used instead of alpha,alpha'-bipyridyl. Resting cells grown on 19-HCA readily converted both 5 alpha-androst-1-en-19-ol-3,17-dione and androst-4-en-19-ol-3,17-dione into estrone. Partially purified 1,2-dehydrogenase from steroid-induced Moraxella cells transformed androst-4-en-19-ol-3,17-dione into estrone and formaldehyde in the presence of phenazine methosulfate, an artificial electron acceptor. These results suggest that the degradation of the hydrocarbon side chain of 19-HCA does not proceed via C-22 phenolic acid intermediates and complete removal of the C-17 side chain takes place prior to the aromatization of the A ring in estrone. The mode of degradation of the sterol side chain appears to be through the fission of the C-17-C-20 bond. On the basis of these observations, a new pathway for the formation of estrone from 19-HCA in Moraxella sp. has been proposed.
Resumo:
The reaction of the amino spirocyclic cyclotriphosphazene N3P3(NMe2)4(NHCH2CH2CH2NH) (2) with palladium chloride gives the stable chelate complex [PdCl2.2] (4). An X-ray crystallographic study reveals that one of the nitrogen atoms of the diaminoalkane moiety and an adjacent phosphazene ring nitrogen atom are bonded to the metal. An analogous reaction with the phosphazene N3P3(NMe2)4(NHCH2CH2NH) (1) gives initially a similar complex which undergoes facile hydrolysis to give the novel monometallic and bimetallic complexes [PdCl2.HN3P3(O)(NMe2)4(NHCH2CH2NH2)] (5) and [PdCl{N3P3(NMe2)4(NCH2CH2NH2)}]2(O) (6), which have been structurally characterized; in the former, an (oxophosphazadienyl)ethylenediamine is chelated to the metal whereas, in the latter, an oxobridged bis(cyclotriphosphazene) acts as a hexadentate nitrogen donor ligand in its dianionic form. Crystal data for 4 : a = 14.137(1) angstrom, b = 8.3332(5) angstrom, c = 19.205(2) angstrom, beta = 96.108(7)degrees, P2(1)/c, Z = 4, R = 0.027 with 3090 reflections (F > 5sigma(F)). Crystal data for 5 : a = 8.368(2) angstrom, b = 16.841(4) A, c = 16.092(5) angstrom, beta = 98.31(2)degrees, P2(1)/n, Z = 4, R = 0.049 with 3519 reflections (F > 5sigma(F)). Crystal data for 6 : a = 22.455(6) angstrom, b = 14.882(3) angstrom, c = 13.026(5) angstrom, 6 = 98.55(2)degrees, C2/c, Z = 4, R = 0.038 with 3023 reflections (F > 5sigma(F)).
Resumo:
Synthesis of 5, 5-dimethyl- 7-methoxy-4 -oxatricyclo[4,3,1,0(3,7)]- decan-2-one 3a, a novel heterocyclic ring system present in morellin 1, and its 3-substituted derivatives 3b-e, is described from the Diels-Alder adducts 7, available from 1-methoxycyclohexa-1,4-dienes 4. Two routes, which involved the halocyclisation and the oxidative addition, were investigated for the conversion of the adducts 7 into 3. While the halocyclisation method resulted in mixtures, excellent yields of the target molecule were obtained by the second method. Solvolysis of the bromoether 9 resulted in a mixture of rearranged products 10, 13, 15 and 16.
Resumo:
Two new synthetic routes for the preparation of the title compound and its 3-substituted derivatives, a novel ring system present in morellin and other related natural products, are reported from the readily available dihydroanisoles.
Resumo:
Cyclization of compound 5c in trifluoroacetic acid/hexamethylenetetramine produces Tröger's base analogue 6c in 75% yield with 70% diastereoselectivity.
Resumo:
A high-throughput screening was employed to identify new compounds in Cu(CH3COO)(2)center dot H2O-NIPA-heterocyclic ligand systems. Of the compounds identified, three compounds, Cu-3{(NO2)-C6H3-(COO)(2)}(3)(C3N6H6)] (1), Cu-2(mu(3)-OH)(H2O){(NO2)-C6H3-(COO)(2)}(CN4H)]center dot-(H2O) (II), and Cu-2(mu(3)-OH)(H2O){(NO2)-C6H3-(COO)(2}-)(CN5H2)]center dot 2(H2O) (III), have been isolated as good quality single crystals by employing conventional hydrothermal methods. Three other compounds, Cu-2{(NO2)-C6H3-(COO)(2)}-(CN4H)(H2O) (IIa), Cu-2{(NO2)-C6H3-(COO)(2)}(CN5H2) (IIIa), and Cu-2{(NO2)-C6H3-(COO)(2)}{(CN5H2)(2)}2H(2)O (IIIb), were identified by a combination of elemental analysis, thermogravimetric analysis (TGA), and IR spectroscopic studies, although their structures are yet to be determined. The single crystalline compounds were also characterized by elemental analysis, TGA, IR, UV vis, magnetic, and catalytic studies. The structures of the compounds have paddle wheel (I) and infinite Cu 0(H) Cu chains (II and HI) connected with NLPA and heterocyclic ligands forming two-(II) and three-dimensional (I and III) structures. The bound and lattice water molecules in 11 and 111 could be reversibly removed/inserted without affecting the structure. In the case of II, the removal of water gives rise to a structural transition, but the dehydrated phase reverts back to the original phase on prolonged exposure to atmospheric conditions. Magnetic studies indicate an overall antiferromagnetism in all of the compounds. Lewis acid catalytic studies indicate that compounds II and HI are active for cyanosilylation of imines.