308 resultados para metal foam heat exchangers
Resumo:
The interactions of lithium perchlorate with ligands such as dimethyl sulphoxide, acetonitrile, pyridine and the Schiff base liquid crystals are investigated. The experiments open a new field for the study of metal-ion-ligand interactions in thermotropic liquid crystals.
Resumo:
The unsteady heat transfer associated with flow due to eccentrically rotating disks considered by Ramachandra Rao and Kasiviswanathan (1987) is studied via reformulation in terms of cylindrical polar coordinates. The corresponding exact solution of the energy equation is presented when the upper and lower disks are subjected to steady and unsteady temperatures. For an unsteady flow with nonzero mean, the energy equation can be solved by prescribing the temperature on the disk as a sum of steady and oscillatory parts
Resumo:
Oxidation of representative halophenols and halonaphthols by peroxidisulphate has been examined. The influence of metallic ions, viz. Cu2+, Fe3+, Ag+, on the above reaction has been studied. Cu2+ ion-catalyzed oxidation gives halo-1, 4-quinones in excellent yield. Potassium bis(biureto)cuprate(III) complex also oxidises halophenols to halo-1, 4-quinones.
Resumo:
The change in the specific heat by the application of magnetic field up to 161 for high temperature superconductor system for DyBa2Cu3O7-x by Revaz et al. [23] is examined through the phenomenological Ginzburg-Landau(G-L) theory of anisotropic Type-II superconductors. The observed specific heat anomaly near T-c with magnetic field is explained qualitatively through the expression <Delta C > = (B-a/T-c) t/(1 - t)(alpha Theta(gamma)lambda(2)(m)(0)), which is the anisotropic formulation of the G-L theory in the London limit developed by Kogan and coworkers; relating to the change in specific heat Delta C for the variation of applied magnetic field for different orientations with c-axis. The analysis of this equation explains satisfactorily the specific heat anomaly near T-c and determines the anisotropic ratio gamma as 5.608, which is close to the experimental value 5.3 +/- 0.5given in the paper of Revaz et al. for this system. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
CaSiO3 : Dy3+ (1-5 mol. %) nanophosphors were synthesized by a simple low-temperature solution combustion method. Powder X-ray diffraction patterns revealed that the phosphors are crystalline and can be indexed to a monoclinic phase. Scanning electron micrographs exhibited faceted plates and angular crystals of different sizes with a porous nature. Photoluminescence properties of the Dy3+-doped CaSiO3 phosphors were observed and analyzed. Emission peaks at 483, 573 and 610 nm corresponding to Dy3+ were assigned as F-4(9/2)-> H-6(15/2), F-4(9/2) -> H-6(13/2) and F-4(9/2) -> H-6(11/2) transitions, respectively, and dominated by the Dy3+ F-4(9/2) -> H-6(13/2) hyperfine transition. Experimental results revealed that the luminescence intensity was affected by both heat treatment and the concentration of Dy3+ (1-5 mol. %) in the CaSiO3 host. Optimal luminescence conditions were achieved when the concentration of Dy3+ was 2 mol. %. UV-visible absorption features an intense band at 240 nm, which corresponds to an O-Si ligand-to-metal charge transfer band in the SiO32- group. The optical energy band gap for the undoped sample was found to be 5.45 eV, whereas in Dy3+-doped phosphors it varies in the range 5.49-5.65 eV. The optical energy gap widens with increase of Dy3+ ion dopant.
Resumo:
Silicon dioxide films are extensively used as protective, barrier and also low index films in multilayer optical devices. In this paper, the optical properties of electron beam evaporated SiO2 films, including absorption in the UV, visible and IR regions, are reported as a function of substrate temperature and post-deposition heat treatment. A comparative study of the optical properties of SiO2 films deposited in neutral and ionized oxygen is also made.
Resumo:
Statistical methods for optimizing the morphology of oxide-based, bifunctional oxygen electrodes for use in rechargeable metal/air batteries are examined with regard to binder composition, compaction time, and compaction load. Results show that LaNiO3 with PTFE binder in a nickel mesh envelope provides a satisfactory electrode.
Resumo:
Microporous polybenzimidazole of 250–500 μm spherical bead size from Celanese has been reacted with epichlorohydrin and sodium hydroxide and the resulting product with pendant epoxy groups has been reacted with various chelating ligands in order to augment the metal sorption capacity and selectivity of the resin. The chelating ligands used include ethylenediamine, diethylenetriamine, diethanolamine, dimethylglyoxime, L-cysteine, thiourea, dithiooxamide, glyoxal-bis-2-hydroxyanil, salicylaldehyde-ethylenediimine, and glyoxal-bis-2-mercaptoanil. The aminolysis of the pendant epoxy groups with the oligoamines has been performed in pyridine under reflux conditions, while the addition reactions with the other ligands which are alkali soluble have been carried out at room temperature in a mixture of dioxane and aqueous KOH using tetra-n-butylammonium iodide as the phase transfer catalyst. The products are found to possess high capacity and selectivity in metal sorption depending on the ligand attached.
Resumo:
A numerical solution of the unsteady boundary layer equations under similarity assumptions is obtained. The solution represents the three-dimensional unsteady fluid motion caused by the time-dependent stretching of a flat boundary. It has been shown that a self-similar solution exists when either the rate of stretching is decreasing with time or it is constant. Three different numerical techniques are applied and a comparison is made among them as well as with earlier results. Analysis is made for various situations like deceleration in stretching of the boundary, mass transfer at the surface, saddle and nodal point flows, and the effect of a magnetic field. Both the constant temperature and constant heat flux conditions at the wall have been studied.
Resumo:
The synthesis of manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of a new ligand 2-thiophene-2-yl-3(thiophene-2-carboxylidene-amino)-1,2-dihydroquinazolin-4(3H)-one (TTCADQ) is described. The ligand and metal complexes were characterized by elemental analysis, conductivity measurements, spectral (u.v.-vis., i.r., 1D n.m.r., 2D hetcor and e.p.r.) and thermal studies. The formation of 1,2-dihydroquinazolin-4(3H)-one rather than hydrazone, in the reaction of aromatic aldehyde and o-aminobenzoylhydrazide is proved by single crystal X-ray diffraction and 2D hetcor n.m.r. studies. On the basis of elemental analysis, u.v.-vis.spectroscopy and magnetic moment studies, six coordinate geometry for all the complexes was proposed. The i.r. spectral studies reveal the bidentate behaviour of the ligand.
Resumo:
Chemically modified microporous materials can be prepared as robust catalysts suitable for application in vapor phase processes such as Friedel-Crafts alkylation. In the present paper we have investigated the use of rare earth metal (Ce3+, La3+, RE3+, and Sm3+) exchanged Na-Y zeolites as catalysts for the alkylation of benzene with long chain linear 1-olefin; 1-dodecene. Thermodesorption studies of 2,6-dimethylpyridine adsorbed catalysts (in the temperature range 573 to 873 K) show that the rare earth zeolites are highly Bronsted acidic in nature. A perfect correlation between catalyst selectivity towards the desired product (2-phenyldodecane) and Bronsted acid sites amount has been observed. (c) 2006 Springer Science + Business Media, Inc.
Resumo:
In the present article, slag foaming phenomenon under dynamic conditions is critically analyzed on the basis of the results of high-temperature X-ray image analysis experiments. The results indicate that the mismatch between the gas generation rate and gas escape rate has a serious impact on the foam height. This mismatch is attributed to the chemical reaction rate, which has to be considered in modeling slag foaming under dynamic conditions. The results further imply that a critical ratio of bubble size/crucible size exists, where wall effects are likely to become prominent.