354 resultados para complex polymer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional, biphasic, multicomponent steady-state model based on phenomenological transport equations for the catalyst layer, diffusion layer, and polymeric electrolyte membrane has been developed for a liquid-feed solid polymer electrolyte direct methanol fuel cell (SPE- DMFC). The model employs three important requisites: (i) implementation of analytical treatment of nonlinear terms to obtain a faster numerical solution as also to render the iterative scheme easier to converge, (ii) an appropriate description of two-phase transport phenomena in the diffusive region of the cell to account for flooding and water condensation/evaporation effects, and (iii) treatment of polarization effects due to methanol crossover. An improved numerical solution has been achieved by coupling analytical integration of kinetics and transport equations in the reaction layer, which explicitly include the effect of concentration and pressure gradient on cell polarization within the bulk catalyst layer. In particular, the integrated kinetic treatment explicitly accounts for the nonhomogeneous porous structure of the catalyst layer and the diffusion of reactants within and between the pores in the cathode. At the anode, the analytical integration of electrode kinetics has been obtained within the assumption of macrohomogeneous electrode porous structure, because methanol transport in a liquid-feed SPE- DMFC is essentially a single-phase process because of the high miscibility of methanol with water and its higher concentration in relation to gaseous reactants. A simple empirical model accounts for the effect of capillary forces on liquid-phase saturation in the diffusion layer. Consequently, diffusive and convective flow equations, comprising Nernst-Plank relation for solutes, Darcy law for liquid water, and Stefan-Maxwell equation for gaseous species, have been modified to include the capillary flow contribution to transport. To understand fully the role of model parameters in simulating the performance of the DMCF, we have carried out its parametric study. An experimental validation of model has also been carried out. (C) 2003 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotational spectra of five isotopologues of the title complex, C(6)H(5)CCH center dot center dot center dot H(2)O, C(6)H(5)CCH center dot center dot center dot HOD, C(6)H(5)CCH center dot center dot center dot D(2)O, C(6)H(5)CCH center dot center dot center dot H(2)(18)O and C(6)H(5)CCD center dot center dot center dot H(2)O, were measured and analyzed. The parent isotopologue is an asymmetric top with kappa = -0.73. The complex is effectively planar (ab inertial plane) and both `a' and `b' dipole transitions have been observed but no c dipole transition could be seen. All the transitions of the parent complex are split into two resulting from an internal motion interchanging the two H atoms in H(2)O. This is confirmed by the absence of such doubling for the C(6)H(5)CCH center dot center dot center dot HOD complex and a significant reduction in the splitting for the D(2)O analog. The rotational spectra, unambiguously, reveal a structure in which H(2)O has both O-H center dot center dot center dot pi (pi cloud of acetylene moiety) and C-H center dot center dot center dot O (ortho C-H group of phenylacetylene) interactions. This is in agreement with the structure deduced by IR-UV double resonance studies (Singh et al., J. Phys. Chem. A, 2008, 112, 3360) and also with the global minimum predicted by advanced electronic structure theory calculations (Sedlack et al., J. Phys. Chem. A, 2009, 113, 6620). Atoms in Molecule (AIM) theoretical analysis of the complex reveals the presence of both O-H center dot center dot center dot pi and C-H center dot center dot center dot O hydrogen bonds. More interestingly, based on the electron densities at the bond critical points, this analysis suggests that both these interactions are equally strong. Moreover, the presence of both these interactions leads to significant deviation from linearity of both hydrogen bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conjugated polymers are intensively pursued as candidate materials for emission and detection devices with the optical range of interest determined by the chemical structure. On the other hand the optical range for emission and detection can also be tuned by size selection in semiconductor nanoclusters. The mechanisms for charge generation and separation upon optical excitation, and light emission are different for these systems. Hybrid systems based on these different class of materials reveal interesting electronic and optical properties and add further insight into the individual characteristics of the different components. Multilayer structures and blends of these materials on different substrates were prepared for absorption, photocurrent (Iph), photoluminescence (PL) and electroluminscence (EL) studies. Polymers chosen were derivatives of polythiophene (PT) and polyparaphenylenevinylene (PPV) along with nanoclusters of cadmium sulphide of average size 4.4 nm (CdS-44). The photocurrent spectral response in these systems followed the absorption response around the band edges for each of the components and revealed additional features, which depended on bias voltage, thickness of the layers and interfacial effects. The current-voltage curves showed multi-component features with emission varying for different regimes of voltage. The emission spectral response revealed additive features and is discussed in terms of excitonic mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary Schiff base copper(II) complex [CuL(phen)](ClO4), where HL is 2-(methylthio)ethylsalicylaldimine and phen is 1,10-phenanthroline, has been prepared and structurally characterized by X-ray crystallography. The complex shows a CuN3OS coordination in a square-pyramidal (4 + 1) geometry with the sulfur as an equatorial ligand. The complex is an avid binder to double-stranded DNA in the minor groove and exhibits both photonuclease and chemical nuclease activity. When exposed to UV light of 312 nm (96 W) or visible light of 532 nm (125 W) under aerobic conditions, the complex causes significant cleavage of supercoiled pUC19 DNA in the absence of any externally added reducing agent or H2O2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addition of excess carbon disulfide to cis/trans-[(dPPM)(2)Ru(H)(2)] results in the methanedithiolate complex [(dppm)(2)Ru(eta(2)-S2CH2)] 4 via the intermediacy of cis-[(dppm)(2)Ru(H)(SC(S)H)] 2. The X-ray crystal structure of this species has been determined.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pi-electron rich supramolecular polymer as an efficient fluorescent sensor for electron deficient nitroaromatic explosives has been synthesized, and the role of H-bonding in dramatic amplification of sensitivity/fluorescence quenching efficiency in the solid state has been established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic polymer-metal composites (IPMC), piezoelectric polymer composites and nematic elastomer composites are materials, which exhibit characteristics of both sensors and actuators. Large deformation and curvature are observed in these systems when electric potential is applied. Effects of geometric non-linearity due to the chargeinduced motion in these materials are poorly understood. In this paper, a coupled model for understanding the behavior of an ionic polymer beam undergoing large deformation and large curvature is presented. Maxwell's equations and charge transport equations are considered which couple the distribution of the ion concentration and the pressure gradient along length of a cantilever beam with interdigital electrodes. A nonlinear constitutive model is derived accounting for the visco-elasto-plastic behavior of these polymers and based on the hypothesis that the presence of electrical charge stretches/contracts bonds, which give rise to electrical field dependent softening/hardening. Polymer chain orientation in statistical sense plays a role on such softening or hardening. Elementary beam kinematics with large curvature is considered. A model for understanding the deformation due to electrostatic repulsion between asymmetrical charge distributions across the cross-sections is presented. Experimental evidence that Silver(Ag) nanoparticle coated IPMCs can be used for energy harvesting is reported. An IPMC strip is vibrated in different environments and the electric power against a resistive load is measured. The electrical power generated was observed to vary with the environment with maximum power being generated when the strip is in wet state. IPMC based energy harvesting systems have potential applications in tidal wave energy harvesting, residual environmental energy harvesting to power MEMS and NEMS devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel, microporous polymer networks (MPNs) have been generated in a simple, acid catalysed Friedel-Crafts-type self-condensation of A(2)B(2)- and A(2)B(4)-type fluorenone monomers. Two A2B4-type monomers with 2,7-bis(N, N-diphenylamino) A or 2,7-bis [4-(N, N-diphenylamino) phenyl] D substitution of the fluorenone cores lead to MPNs with high S(BET) surface areas of up to 1400 m(2) g(-1). Two MPNs made of binary monomer mixtures showed the highest Brunauer-Emmett-Teller (BET) surface areas S(BET) of our series (SBET of up to 1800 m(2) g(-1)) after washing the powdery samples with supercritical carbon dioxide. Total pore volumes of up to 1.6 cm(3) g(-1) have been detected. It is observed that the substitution pattern of the monomers is strongly influencing the resulting physicochemical properties of the microporous polymer networks (MPNs).