303 resultados para Pulsed electric acoustic technique
Resumo:
Raman induced phase conjugation (RIPC) spectroscopy is a relatively new coherent Raman spectroscopic (CRS) technique using optical phase conjugation (OPC), with which complete Raman spectra of transparent media can be obtained. It is a non-degenerate four-wave mixing technique in which two pulsed laser beams at Ω1 and Ω1 ± Δ where A corresponds to a vibrational frequency of a nonlinear medium mix with a third laser beam at Ω1 to generate a fourth beam Ω1 ± Δ, which is nearly phase conjugate to one of the beams at Ω1. With this technique one can measure the ratio of the resonant and nonresonant components of the third-order nonlinear susceptibilities of the nonlinear media. We have used this technique to get Raman spectra of well-known organic solvents like benzene etc., using pulsed Nd: YAG -dye laser systems. We have also studied the effect of delaying one of the interacting beams with respect to the others and the phase conjugate property of RIPC signals.
Resumo:
The performance parameters e.g. non-linear coefficient (α) and breakdown electric field (Eb1mA/cm2) of ZnO based ceramic varistors were found to improve after the addition of 10 mol% MgO. The improvement in the varistor properties is examined by ac impedance spectroscopy technique in the frequency range (1 Hz–10 MHz) between temperature 25–250°C and understood in terms of differing contributions from the equivalent electrical circuit elements.
Resumo:
This paper describes a novel mimetic technique of using frequency domain approach and digital filters for automatic generation of EEG reports. Digitized EEG data files, transported on a cartridge, have been used for the analysis. The signals are filtered for alpha, beta, theta and delta bands with digital bandpass filters of fourth-order, cascaded, Butterworth, infinite impulse response (IIR) type. The maximum amplitude, mean frequency, continuity index and degree of asymmetry have been computed for a given EEG frequency band. Finally, searches for the presence of artifacts (eye movement or muscle artifacts) in the EEG records have been made.
Resumo:
A technique for fabrication of thin-film circuits for microwave integrated circuit (MIC) application is presented. This low-cost fabrication technique utilizes laser direct write of copper patterns on alumina substrates. The method obviates the need for photomasks and photolithography. The film deposition mechanism, deposit film analysis, and MIC fabrication sequence are presented. Performance evaluation of MICs fabricated using this technique is also included
Resumo:
Programmable pulse generator (PPG) circuits using programmable interval timer chips are normally based on a PC or a microprocessor. We describe here a simple low cost programmable two-pulse generator using Intel 8253s in a stand-alone mode, eliminating the need for a PC or a microprocessor, though our design also can be operated via a PC or a microprocessor.
Resumo:
Epitaxial LaNiO3(LNO) thin films on LaAlO3(LAO), SrTiO3(STO), and YSZ are grown by pulsed laser deposition method at 350 mTorr oxygen partial pressure and 700 °C substrate temperature. As‐deposited LNO films are metallic down to 10 K. c‐axis oriented YBa2Cu3O7 (YBCO) films were grown on LNO/LAO as well as LNO/STO surfaces without affecting superconducting transition temperature of YBCO. Textured LNO thin films were grown on c‐axis oriented YBCO/STO and YBCO/YSZ . Transport measurements of these bilayer films showed that LNO is a good metallic contact material for YBCO.
Resumo:
A fairly comprehensive computer program incorporating explicit expressions for the four-pole parameters of concentric-tube resonators, plug mufflers, and three-duct cross-flow perforated elements has been used for parametric studies. The parameters considered are hole diameter, the center-to-center distance between consecutive holes (which decides porosity), the incoming mean flow Mach number, the area expansion ratio, the number of partitions of chambers within a given overall shell length, and the relative lengths of these partitions or chambers, all normalized with respect to the exhaust pipe diameter. Transmission loss has been plotted as a function of a normalized frequency parameter. Additionally, the effect of the tail pipe length on insertion loss for an anechoic source has also been studied. These studies have been supplemented by empirical expressions for the normalized static pressure drop for different types of perforated-element mufflers developed from experimental observations.
Resumo:
Normal mode sound propagation in an isovelocity ocean with random narrow-band surface waves is considered, assuming the root-mean-square wave height to be small compared to the acoustic wavelength. Nonresonant interaction among the normal modes is studied straightforward perturbation technique. The more interesting case of resonant interaction is investigated using the method of multiple scales to obtain a pair of stochastic coupled amplitude equations which are solved using the Peano-Baker expansion technique. Equations for the spatial evolution of the first and second moments of the mode amplitudes are also derived and solved. It is shown that, irrespective of the initial conditions, the mean values of the mode amplitudes tend to zero asymptotically with increasing range, the mean-square amplitudes tend towards a state of equipartition of energy, and the total energy of the modes is conserved.
Resumo:
Proton spin—lattice relaxation time (T1) is measured in [N(CH3)4]PbX3 (X=Cl, Br, I) from 300-77 K at 9.75 MHz. All the compounds show discontinuous changes in T1 values (at 256, 270 and 277 K, respectively), indicating phase transitions. Single T1 minimum is observed in all the cases and the T1 variation is explained in terms of [N(CH3)4] and CH3 group dynamics. The activation energy Eα decreases from chloride to iodide (from 4 to 2 kcal/mol). In bromide and iodide, T1 is found to decrease with increase in temperature at higher temperatures, indicating the presence of spin—rotation interaction.
Resumo:
The increasing variability in device leakage has made the design of keepers for wide OR structures a challenging task. The conventional feedback keepers (CONV) can no longer improve the performance of wide dynamic gates for the future technologies. In this paper, we propose an adaptive keeper technique called rate sensing keeper (RSK) that enables faster switching and tracks the variation across different process corners. It can switch upto 1.9x faster (for 20 legs) than CONV and can scale upto 32 legs as against 20 legs for CONV in a 130-nm 1.2-V process. The delay tracking is within 8% across the different process corners. We demonstrate the circuit operation of RSK using a 32 x 8 register file implemented in an industrial 130-nm 1.2-V CMOS process. The performance of individual dynamic logic gates are also evaluated on chip for various keeper techniques. We show that the RSK technique gives superior performance compared to the other alternatives such as Conditional Keeper (CKP) and current mirror-based keeper (LCR).
Resumo:
The efficiency of acoustooptic (AO) interaction in YZ-cut proton exchanged (PE) LiNbO3 waveguides is theoretically analysed by determining the overlap between the optical and acoustic field distributions. The present analysis takes into account the perturbed SAW field distribution due to the presence of the PE layer on the LiNbO3 substrate determined by the rigorous layered medium approach. The overlap is found to be significant upto very high acoustic frequencies of the order of 5 GHz, whereas in the earlier analysis by vonHelmolt and Schaffer [6] for diffused waveguides, it was shown that the overlap integral rolls down to nearly zero at this high frequency range.
Resumo:
Multilayer lithium tantalate thin films were deposited on Pt-Si Si(111)/SiO2/TiO2/Pt(111)]substrates by sol-gel process. The films were annealed at different annealing temperatures (300, 450 and 650 degrees C) for 15 min. The films are polycrystalline at 650 degrees C and at other annealing conditions below 650 degrees C the films are in amorphous state. The films were characterized using X-ray diffraction, atomic force microscopy (AFM) and Raman spectroscopy. The AFM of images show the formation of nanograins of uniform size (50 nm) at 650 degrees C. These polycrystalline films exhibit spontaneous polarization of 1.5 mu C/cm(2) at an application of 100 kV/cm. The dielectric constant of multilayer film is very small (6.4 at 10 kHz) as compared to that of single crystal. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A novel detection technique to estimate the amount of chirp in fiber Bragg gratings (FBGs) is proposed. This method is based on the fact that reflectivity at central wavelength of FBG reflection changes with strain/temperature gradient (linear chirp) applied to the same. Transfer matrix approach was used to vary different grating parameters (length, strength and apodization) to optimize variation of reflectivity with linear chirp. Analysis is done for different sets of `FBG length-refractive index strength' combinations for which reflectivity vary linearly with linear chirp over a decent measurement range. This article acts as a guideline to choose appropriate grating parameters in designing sensing apparatus based on change in reflectivity at central wavelength of FBG reflection.
Resumo:
An oscillating droplet method combined with electromagnetic levitation has been applied to determine the surface tensions of liquid pure iron, nickel and iron-nickel alloys as a function of the temperature. The natural frequency of the oscillating droplet is evaluated using a Fourier analyser. The theoretical background of this method and the experimental set-up were described, and the influence of magnetic field strength was also discussed. The experimental results were compared with those of other investigators and interpreted using theoretical models (Butler's equation, subregular and perfect solution model for the surface phase).