348 resultados para Calcium ion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new naphthalene carbohydrazone based dizinc(II) complex has been synthesized and investigated to act as a highly selective fluorescence and visual sensor for a pyrophosphate ion with a quite low detection limit of 155 ppb; this has also been used to detect the pyrophosphate ion released from polymerase-chain-reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti0.97Pt0.032+O1.97 and Ti0.97Pt0.034+O2 have been synthesized by a solution combustion method using alanine and glycine as the fuels, respectively. Both crystallize in anatase TiO2 structure with 15 nm average crystallite size. X-ray photoelectron spectroscopy (XPS) confirmed Pt ions are in the 2+ state in Ti0.97Pt0.03O1.97 (alanine) and 4+ state in Ti0.97Pt0.03O2 (glycine). The rate of CO oxidation occurring over Ti0.97Pt0.032+O1.97 (0.76 mu mol.g(-1).s(-1)) is similar to 10, times more than that over Ti0.97Pt0.034+O2 at 60 degrees C (0.08 mu mol.g(-1).s(-1)). A large shift in 100% hydrocarbons conversion to lower temperature was observed for Pt2+ ion-substituted TiO2 relative 10 that for Pt4+ ion-substituted TiO2. After reoxidation of the reduced compound by H-2 as well as CO, Pt ions are stabilized in mixed valences, 2+ and 4+ states. The role of oxide ion vacancy has been demonstrated by CO oxidation and H-2 + O-2 recombination reactions in the presence and absence of O-2. We analyze the activated lattice oxygens upon substitution of Pt2+ and Pt4+ ions in TiO2, using first-principles density functional theory (DFT) calculations with supercells of Ti31Pt1O63, Ti30Pt2O62, and Ti29Pt3O61 for Pt2+ ion substitution and Ti31Pt1O64, Ti30Pt2O62, and Ti29Pt3O61 for Pt4+ ion substitution in TiO2. We find that the local structure of Pt2+ ion has a distorted square planar geometry and that of Pt4+ ion has an octahedral geometry similar to that of Ti4+ ion in pure TiO2. The change in coordination of Pt2+ ion gives rise to weakly bonded oxygens, and these oxygens are involved in high rates of catalytic reaction. Thus, the high catalytic activity results from synergistic roles of Pt2+ ion and oxide ion vacancy and weakly bonded lattice oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the contribution is to introduce a high performance anode alternative to graphite for lithium-ion batteries (LiBs). A simple process was employed to synthesize uniform graphene-like few-layer tungsten sulfide (WS2) supported on reduced graphene oxide (RGO) through a hydrothermal synthesis route. The WS2-RGO (80:20 and 70:30) composites exhibited good enhanced electrochemical performance and excellent rate capability performance when used as anode materials for lithium-ion batteries. The specific capacity of the WS2-RGO composite delivered a capacity of 400-450 mAh g(-1) after 50 cycles when cycled at a current density of 100 mA g(-1). At 4000 mA g(-1), the composites showed a stable capacity of approximately 180-240 mAh g(-1), respectively. The noteworthy electrochemical performance of the composite is not additive, rather it is synergistic in the sense that the electrochemical performance is much superior compared to both WS2 and RGO. As the observed lithiation/delithiation for WS2-RGO is at a voltage 1.0 V (approximate to 0.1 V for graphite, Li* /Li), the lithium-ion battery with WS2-RGO is expected to possess high interface stability, safety and management of electrical energy is expected to be more efficient and economic. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge-discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g(-1) is obtained. When the acid-treated sample is heated at 300 A degrees C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g(-1). The rate capability study suggests that the sample provides about 150 mAh g(-1) at a specific discharge current of 1.25 A g(-1). Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study demonstrates the utility of ternary ion-pair complex formed among BINOL (1,1'-Bi-2-naphthol), a carboxylic acid and an organic base, such as, dimethylpyridine (DMAP), 1,4-diazabicyclo2.2.2]octane (DABCO), as a versatile chiral solvating agent (CSA) for the enantiodiscrimination of carboxylic acids, measurement of enantiomeric excess (ee) and the assignment of absolute configuration of hydroxy acids. The proposed mechanism of ternary complex has wider application for testing the enantiopurity owing to the fact that the binary mixture using BINOL alone does not serve as a solvating agent for their discrimination. In addition, the developed protocol has an excellent utility for the assignment of the absolute configurations of hydroxy acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anti-Markovnikov geminal oxyamination of styrenyl alkenes in an intermolecular fashion using the umpolung strategy mediated by the bromonium ion is reported. Isotope labeling studies confirm the migration of the phenyl group in the semipinacol rearrangement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly branched and porous graphene nanosheet synthesized over different substrates as anode for Lithium ion thin film battery. These films synthesized by microwave plasma enhanced chemical vapor deposition at temperature 700 degrees C. Scanning electron microscopy and X-ray photo electron spectroscopy are used to characterize the film surface. It is found that the graphene sheets possess a curled and flower like morphology. Electrochemical performances were evaluated in swezelock type cells versus metallic lithium. A reversible capacity of 520 mAh/g, 450 mAh/g and 637 mAh/g was obtained after 50 cycles when current rate at 23 mu A cm(2) for CuGNS, NiGNS and PtGNS electrodes, respectively. Electrochemical properties of thin film anode were measured at different current rate and gave better cycle life and rate capability. These results indicate that the prepared high quality graphene sheets possess excellent electrochemical performances for lithium storage. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computationally efficient Li-ion battery model has been proposed in this paper. The battery model utilizes the features of both analytical and electrical circuit modeling techniques. The model is simple as it does not involve a look-up table technique and fast as it does not include a polynomial function during computation. The internal voltage of the battery is modeled as a linear function of the state-of-charge of the battery. The internal resistance is experimentally determined and the optimal value of resistance is considered for modeling. Experimental and simulated data are compared to validate the accuracy of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Borocarbonitrides (BxCyNz) with a graphene-like structure exhibit a remarkable high lithium cyclability and current rate capability. The electrochemical performance of the BxCyNz materials, synthesized by using a simple solid-state synthesis route based on urea, was strongly dependent on the composition and surface area. Among the three compositions studied, the carbon-rich compound B0.15C0.73N0.12 with the highest surface area showed an exceptional stability (over 100cycles) and rate capability over widely varying current density values (0.05-1Ag(-1)). B0.15C0.73N0.12 has a very high specific capacity of 710mAhg(-1) at 0.05Ag(-1). With the inclusion of a suitable additive in the electrolyte, the specific capacity improved drastically, recording an impressive value of nearly 900mAhg(-1) at 0.05Ag(-1). It is believed that the solid-electrolyte interphase (SEI) layer at the interface of BxCyNz and electrolyte also plays a crucial role in the performance of the BxCyNz .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a technique to vary the electric field within a cylindrical ion trap (CIT) mass spectrometer while it is in operation. In this technique, the electrodes of the CIT are split into number of mini-electrodes and different voltages are applied to these split-electrodes to achieve the desired field. In our study we have investigated two geometries of the split-electrode CIT. In the first, we retain the flat endcap electrodes of the CIT but split the ring electrode into five mini-rings. In the second configuration, we split the ring electrode of the CIT into three mini-rings and also divide the endcaps into two mini-discs. By applying different potentials to the mini-rings and mini-discs of these geometries we have shown that the field within the trap can be optimized to desired values. In our study, two different types of fields were targeted. In the first, potentials were adjusted to obtain a linear electric field and, in the second, a controlled higher order even multipole field was obtained by adjusting the potential. We have shown that the different potentials required can be derived from a single RF generator by connecting appropriate capacitor terminations to split electrodes. The field within the trap can be modified by changing the values of the external capacitors. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In view of the fact that bone healing can be enhanced due to external electric field application, it is important to assess the influence of the implant conductivity on the bone regeneration in vivo. To address this issue, this study reports the in vivo biocompatibility property of multistage spark plasma sintered hydroxyapatite (HA)-80 wt % calcium titanate (CaTiO3) composites and monolithic HA, which have widely different conductivity property (14 orders of magnitude difference). The ability of bone regeneration was assessed by implantation in cylindrical femoral bone defects of rabbit animal model for varying time period of 1, 4, and 12 weeks. The overall assessment of the histology results suggests that the progressive healing of bone defects around HA-80 wt % CaTiO3 is associated with a better efficacy with respect to (w.r.t) early stage neobone formation, which is histomorphometrically around 140% higher than monolithic HA. Overall, this study demonstrates that the in vivo biocompatibility property of HA-80 wt % CaTiO3 with respect to local effects after 12 weeks of implantation is not compromised both qualitatively and quantitatively, and a comparison with control implant (HA) points toward the critical role of electrical conductivity on better early stage bone regeneration. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 842-851, 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesoporous quaternary bioactive glasses and glass-ceramic with alkali-alkaline-earth oxide were successfully synthesized by using non-ionic block copolymer P123 and evaporation induced self assembly (EISA) process followed by acid treatment assisted sal-gel method. As prepared samples has been characterized for the structural, morphological and textural properties with the various analytical techniques. Glass dissolution/ion release rate in simulated body fluid (SBF) was monitored by inductively coupled plasma (ICP) emission spectroscopy, whereas the formation of apatite phase and its crystallization at the glass and glass-ceramic surface was examined by structural, textural and microscopic probes. The influence of alkaline-earth oxide content on the glass structure followed by textural property has become more evident. The pristine glass samples exhibit a wormhole-like mesoporous structure, whereas the glass-ceramic composition is found to be in three different phases, namely crystalline hydroxyapatite, wollastonite and a residual glassy phase as observed in Cerabone (R) A/W. The existence of calcium orthophosphate phase is closely associated with the pore walls comprising nanometric-sized ``inclusions''. The observed high surface area in conjunction with the structural features provides the possible explanation for experimentally observed enhanced bioactivity through the easy access of ions to the fluid. On the other hand, presence of multiple phases in glass-ceramic sample inhibits or delays the kinetics of apatite formation. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flower-like hierarchical architectures of layered SnS2 have been synthesized ionothermally for the first time, using a water soluble EMIM]BF4 ionic liquid (IL) as the solvent medium. At lower reaction temperatures, the hierarchical structures are formed of few-layered polycrystalline 2D nanosheet-petals composed of randomly oriented nanoparticles of SnS2. The supramolecular networks of the IL serve as templates on which the nanoparticles of SnS2 are glued together by combined effects of hydrogen bonding, electrostatic, hydrophobic and imidazolium stacking interactions of the IL, giving rise to polycrystalline 2D nanosheet-petals. At higher reaction temperatures, single crystalline plate-like nanosheets with well-defined crystallographic facets are obtained due to rapid inter-particle diffusion across the IL. Efficient surface charge screening by the IL favors the aggregation of individual nanosheets to form hierarchical flower-like architectures of SnS2. The mechanistic aspects of the ionothermal bottom-up hierarchical assembly of SnS2 nanosheets are discussed in detail. Li-ion storage properties of the pristine SnS2 samples are examined and the electrochemical performance of the sample synthesized at higher temperatures is found to be comparable to that reported for pristine SnS2 samples in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We incorporated tin oxide nanostructures into the graphene nanosheet matrix and observed that the phase of tin oxide varies with the morphology. The highest discharge capacity and coulumbic efficiency were obtained for SnO phase of nanoplates morphology. Platelet morphology of tin oxide shows more reversible capacity than the nanoparticle (SnO2 phase) tin oxide. The first discharge capacity obtained for SnO@GNS is 1393 and 950 mAh/g for SnO2@GNS electrode at a current density of 23 mu A/cm(2). A stable capacity of about 1022 and 715 mAh/g was achieved at a current rate of 23 mu A/cm(2) after 40 cycles for SnO@GNS and SnO2@GNS anodes, respectively. (C) 2014 Elsevier Ltd. All rights reserved.