53 resultados para scalability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the emergence of large-volume and high-speed streaming data, the recent techniques for stream mining of CFIpsilas (closed frequent itemsets) will become inefficient. When concept drift occurs at a slow rate in high speed data streams, the rate of change of information across different sliding windows will be negligible. So, the user wonpsilat be devoid of change in information if we slide window by multiple transactions at a time. Therefore, we propose a novel approach for mining CFIpsilas cumulatively by making sliding width(ges1) over high speed data streams. However, it is nontrivial to mine CFIpsilas cumulatively over stream, because such growth may lead to the generation of exponential number of candidates for closure checking. In this study, we develop an efficient algorithm, stream-close, for mining CFIpsilas over stream by exploring some interesting properties. Our performance study reveals that stream-close achieves good scalability and has promising results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over past few years, the studies of cultured neuronal networks have opened up avenues for understanding the ion channels, receptor molecules, and synaptic plasticity that may form the basis of learning and memory. The hippocampal neurons from rats are dissociated and cultured on a surface containing a grid of 64 electrodes. The signals from these 64 electrodes are acquired using a fast data acquisition system MED64 (Alpha MED Sciences, Japan) at a sampling rate of 20 K samples with a precision of 16-bits per sample. A few minutes of acquired data runs in to a few hundreds of Mega Bytes. The data processing for the neural analysis is highly compute-intensive because the volume of data is huge. The major processing requirements are noise removal, pattern recovery, pattern matching, clustering and so on. In order to interface a neuronal colony to a physical world, these computations need to be performed in real-time. A single processor such as a desk top computer may not be adequate to meet this computational requirements. Parallel computing is a method used to satisfy the real-time computational requirements of a neuronal system that interacts with an external world while increasing the flexibility and scalability of the application. In this work, we developed a parallel neuronal system using a multi-node Digital Signal processing system. With 8 processors, the system is able to compute and map incoming signals segmented over a period of 200 ms in to an action in a trained cluster system in real time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prevalent virtualization technologies provide QoS support within the software layers of the virtual machine monitor(VMM) or the operating system of the virtual machine(VM). The QoS features are mostly provided as extensions to the existing software used for accessing the I/O device because of which the applications sharing the I/O device experience loss of performance due to crosstalk effects or usable bandwidth. In this paper we examine the NIC sharing effects across VMs on a Xen virtualized server and present an alternate paradigm that improves the shared bandwidth and reduces the crosstalk effect on the VMs. We implement the proposed hardwaresoftware changes in a layered queuing network (LQN) model and use simulation techniques to evaluate the architecture. We find that simple changes in the device architecture and associated system software lead to application throughput improvement of up to 60%. The architecture also enables finer QoS controls at device level and increases the scalability of device sharing across multiple virtual machines. We find that the performance improvement derived using LQN model is comparable to that reported by similar but real implementations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a randomized algorithm for large scale SVM learning which solves the problem by iterating over random subsets of the data. Crucial to the algorithm for scalability is the size of the subsets chosen. In the context of text classification we show that, by using ideas from random projections, a sample size of O(log n) can be used to obtain a solution which is close to the optimal with a high probability. Experiments done on synthetic and real life data sets demonstrate that the algorithm scales up SVM learners, without loss in accuracy. 1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Even though several techniques have been proposed in the literature for achieving multiclass classification using Support Vector Machine(SVM), the scalability aspect of these approaches to handle large data sets still needs much of exploration. Core Vector Machine(CVM) is a technique for scaling up a two class SVM to handle large data sets. In this paper we propose a Multiclass Core Vector Machine(MCVM). Here we formulate the multiclass SVM problem as a Quadratic Programming(QP) problem defining an SVM with vector valued output. This QP problem is then solved using the CVM technique to achieve scalability to handle large data sets. Experiments done with several large synthetic and real world data sets show that the proposed MCVM technique gives good generalization performance as that of SVM at a much lesser computational expense. Further, it is observed that MCVM scales well with the size of the data set.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new abstract domain for static analysis of executable code. Concrete states are abstracted using circular linear progressions (CLPs). CLPs model computations using a finite word length as is seen in any real life processor. The finite abstraction allows handling overflow scenarios in a natural and straight-forward manner. Abstract transfer functions have been defined for a wide range of operations which makes this domain easily applicable for analyzing code for a wide range of ISAs. CLPs combine the scalability of interval domains with the discreteness of linear congruence domains. We also present a novel, lightweight method to track linear equality relations between static objects that is used by the analysis to improve precision. The analysis is efficient, the total space and time overhead being quadratic in the number of static objects being tracked.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compiler optimizations need precise and scalable analyses to discover program properties. We propose a partially flow-sensitive framework that tries to draw on the scalability of flow-insensitive algorithms while providing more precision at some specific program points. Provided with a set of critical nodes — basic blocks at which more precise information is desired — our partially flow-sensitive algorithm computes a reduced control-flow graph by collapsing some sets of non-critical nodes. The algorithm is more scalable than a fully flow-sensitive one as, assuming that the number of critical nodes is small, the reduced flow-graph is much smaller than the original flow-graph. At the same time, a much more precise information is obtained at certain program points than would had been obtained from a flow-insensitive algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a novel, scalable, clustering based Ordinal Regression formulation, which is an instance of a Second Order Cone Program (SOCP) with one Second Order Cone (SOC) constraint. The main contribution of the paper is a fast algorithm, CB-OR, which solves the proposed formulation more eficiently than general purpose solvers. Another main contribution of the paper is to pose the problem of focused crawling as a large scale Ordinal Regression problem and solve using the proposed CB-OR. Focused crawling is an efficient mechanism for discovering resources of interest on the web. Posing the problem of focused crawling as an Ordinal Regression problem avoids the need for a negative class and topic hierarchy, which are the main drawbacks of the existing focused crawling methods. Experiments on large synthetic and benchmark datasets show the scalability of CB-OR. Experiments also show that the proposed focused crawler outperforms the state-of-the-art.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses a search problem with multiple limited capability search agents in a partially connected dynamical networked environment under different information structures. A self assessment-based decision-making scheme for multiple agents is proposed that uses a modified negotiation scheme with low communication overheads. The scheme has attractive features of fast decision-making and scalability to large number of agents without increasing the complexity of the algorithm. Two models of the self assessment schemes are developed to study the effect of increase in information exchange during decision-making. Some analytical results on the maximum number of self assessment cycles, effect of increasing communication range, completeness of the algorithm, lower bound and upper bound on the search time are also obtained. The performance of the various self assessment schemes in terms of total uncertainty reduction in the search region, using different information structures is studied. It is shown that the communication requirement for self assessment scheme is almost half of the negotiation schemes and its performance is close to the optimal solution. Comparisons with different sequential search schemes are also carried out. Note to Practitioners-In the futuristic military and civilian applications such as search and rescue, surveillance, patrol, oil spill, etc., a swarm of UAVs can be deployed to carry out the mission for information collection. These UAVs have limited sensor and communication ranges. In order to enhance the performance of the mission and to complete the mission quickly, cooperation between UAVs is important. Designing cooperative search strategies for multiple UAVs with these constraints is a difficult task. Apart from this, another requirement in the hostile territory is to minimize communication while making decisions. This adds further complexity to the decision-making algorithms. In this paper, a self-assessment-based decision-making scheme, for multiple UAVs performing a search mission, is proposed. The agents make their decisions based on the information acquired through their sensors and by cooperation with neighbors. The complexity of the decision-making scheme is very low. It can arrive at decisions fast with low communication overheads, while accommodating various information structures used for increasing the fidelity of the uncertainty maps. Theoretical results proving completeness of the algorithm and the lower and upper bounds on the search time are also provided.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large instruction windows and issue queues are key to exploiting greater instruction level parallelism in out-of-order superscalar processors. However, the cycle time and energy consumption of conventional large monolithic issue queues are high. Previous efforts to reduce cycle time segment the issue queue and pipeline wakeup. Unfortunately, this results in significant IPC loss. Other proposals which address energy efficiency issues by avoiding only the unnecessary tag-comparisons do not reduce broadcasts. These schemes also increase the issue latency.To address both these issues comprehensively, we propose the Scalable Lowpower Issue Queue (SLIQ). SLIQ augments a pipelined issue queue with direct indexing to mitigate the problem of delayed wakeups while reducing the cycle time. Also, the SLIQ design naturally leads to significant energy savings by reducing both the number of tag broadcasts and comparisons required.A 2 segment SLIQ incurs an average IPC loss of 0.2% over the entire SPEC CPU2000 suite, while achieving a 25.2% reduction in issue latency when compared to a monolithic 128-entry issue queue for an 8-wide superscalar processor. An 8 segment SLIQ improves scalability by reducing the issue latency by 38.3% while incurring an IPC loss of only 2.3%. Further, the 8 segment SLIQ significantly reduces the energy consumption and energy-delay product by 48.3% and 67.4% respectively on average.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the advent of Internet, video over IP is gaining popularity. In such an environment, scalability and fault tolerance will be the key issues. Existing video on demand (VoD) service systems are usually neither scalable nor tolerant to server faults and hence fail to comply to multi-user, failure-prone networks such as the Internet. Current research areas concerning VoD often focus on increasing the throughput and reliability of single server, but rarely addresses the smooth provision of service during server as well as network failures. Reliable Server Pooling (RSerPool), being capable of providing high availability by using multiple redundant servers as single source point, can be a solution to overcome the above failures. During a possible server failure, the continuity of service is retained by another server. In order to achieve transparent failover, efficient state sharing is an important requirement. In this paper, we present an elegant, simple, efficient and scalable approach which has been developed to facilitate the transfer of state by the client itself, using extended cookie mechanism, which ensures that there is no noticeable change in disruption or the video quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Morse-Smale complex is a useful topological data structure for the analysis and visualization of scalar data. This paper describes an algorithm that processes all mesh elements of the domain in parallel to compute the Morse-Smale complex of large two-dimensional data sets at interactive speeds. We employ a reformulation of the Morse-Smale complex using Forman's Discrete Morse Theory and achieve scalability by computing the discrete gradient using local accesses only. We also introduce a novel approach to merge gradient paths that ensures accurate geometry of the computed complex. We demonstrate that our algorithm performs well on both multicore environments and on massively parallel architectures such as the GPU.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the world of high performance computing huge efforts have been put to accelerate Numerical Linear Algebra (NLA) kernels like QR Decomposition (QRD) with the added advantage of reconfigurability and scalability. While popular custom hardware solution in form of systolic arrays can deliver high performance, they are not scalable, and hence not commercially viable. In this paper, we show how systolic solutions of QRD can be realized efficiently on REDEFINE, a scalable runtime reconfigurable hardware platform. We propose various enhancements to REDEFINE to meet the custom need of accelerating NLA kernels. We further do the design space exploration of the proposed solution for any arbitrary application of size n × n. We determine the right size of the sub-array in accordance with the optimal pipeline depth of the core execution units and the number of such units to be used per sub-array.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract | Electrical switching which has applications in areas such as information storage, power control, etc is a scientifically interesting and technologically important phenomenon exhibited by glassy chalcogenide semiconductors. The phase change memories based on electrical switching appear to be the most promising next generation non-volatile memories, due to many attributes which include high endurance in write/read operations, shorter write/read time, high scalability, multi-bit capability, lower cost and a compatibility with complementary metal oxide semiconductor technology.Studies on the electrical switching behavior of chalcogenide glasses help us in identifying newer glasses which could be used for phase change memory applications. In particular, studies on the composition dependence of electrical switching parameters and investigations on the correlation between switching behavior with other material properties are necessary for the selection of proper compositions which make good memory materials.In this review, an attempt has been made to summarize the dependence of the electrical switching behavior of chalcogenide glasses with other material properties such as network topological effects, glass transition & crystallization temperature, activation energy for crystallization, thermal diffusivity, electrical resistivity and others.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Null dereferences are a bane of programming in languages such as Java. In this paper we propose a sound, demand-driven, inter-procedurally context-sensitive dataflow analysis technique to verify a given dereference as safe or potentially unsafe. Our analysis uses an abstract lattice of formulas to find a pre-condition at the entry of the program such that a null-dereference can occur only if the initial state of the program satisfies this pre-condition. We use a simplified domain of formulas, abstracting out integer arithmetic, as well as unbounded access paths due to recursive data structures. For the sake of precision we model aliasing relationships explicitly in our abstract lattice, enable strong updates, and use a limited notion of path sensitivity. For the sake of scalability we prune formulas continually as they get propagated, reducing to true conjuncts that are less likely to be useful in validating or invalidating the formula. We have implemented our approach, and present an evaluation of it on a set of ten real Java programs. Our results show that the set of design features we have incorporated enable the analysis to (a) explore long, inter-procedural paths to verify each dereference, with (b) reasonable accuracy, and (c) very quick response time per dereference, making it suitable for use in desktop development environments.