170 resultados para particle size measurement


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synchrotron-based high-pressure x-ray diffraction measurements indicate that compressibility, a fundamental materials property, can have a size-specific minimum value. The bulk modulus of nanocrystalline titania has a maximum at particle size of 15 nm. This can be explained by dislocation behavior because very high dislocation contents can be achieved when shear stress induced within nanoparticles counters the repulsion between dislocations. As particle size decreases, compression increasingly generates dislocation networks hardened by overlap of strain fields that shield intervening regions from external pressure. However, when particles become too small to sustain high dislocation concentrations, elastic stiffening declines. The compressibility has a minimum at intermediate sizes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cast aluminium alloy-mica particle composites were made by dispersing mica particles in a vortex produced by stirring the liquid Al-4 wt% Cu-1.5 wt% Mg alloy and then casting the melt containing the suspended particles into permanent moulds. Spiral fluidity and casting fluidity of the alloy containing mica particles in suspension were determined. Both the spiral fluidity and the casting fluidity of the base alloy were found to decrease with an increase in volume or weight percent of mica particles (of a given size), and with a decrease in particle size (for a given amount of particles). The fluidities of Al-4 wt% Cu-1.5 wt% Mg alloys containing suspended mica particles were found to correlate very well with the surface area of suspended mica particles. The regression equation for spiral fluidity Y (cm) as a function of surface area of mica particles per gram of spiral X (cm2 g–1) at 700° C was found to be Y=42.62–0.42X with a correlation coefficient of 0.9634. The regression equations for casting fluidity Yprime (cm) as a functiono of surface area of mica particles per gram of fluidity test piece Xprime (cm2 g–1) at 710 and 670° C were found to be Yprime=19.71–0.17Xprime and Yprime=13.52–0.105Xprime with correlation coefficients of 0.9194 and 0.9612 respectively. The percentage decrease in casting fluidity of composite melts containing up to 2.5 wt% mica with a drop in temperature is quite similar to the corresponding decrease in the casting fluidity of base alloy melts (without mica). The change in fluidity due to mica dispersions has been discussed in terms of changes in viscosity of the composite melts. However, the fluidities of these composite alloys containing up to 2.5 wt% mica are adequate for making a variety of simple castings including bearings for which these alloys have been developed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interfacial area measurement has been carried out experimentally by measuring the bubble size and holdup for air-sodium chloride solution system. The size of the bubble is predominantly established by the air hold up. High speed photography technique for bubble size measurement and gamma ray attenuation method for holdup measurements are followed. The measured values are compared with the theoretically predicted values. Interracial area as a function of the liquid flow rate and also its distance from the nozzle of the ejector has been reported in this paper. The results obtained for this non-reactive system are also compared with those of air-water system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have probed the size dependency of the first hyperpolarizability (b) of copper nanoparticles by hyper-Rayleigh scattering (HRS). Our results indicate that second harmonic generation (SHG) originates predominantly at the surface of the nanoparticles as long as the size (d) remains small compared to the wavelength (k). However, volume contribution to the SH response due to the retardation effect becomes important when particle size grows beyond the `small particle limit'. There is a significant dispersion in the b values of copper nanoparticles owing tothe presence of the strong surface plasmon resonance (SPR) band.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel solid-solution precursor method for the preparation of fine-particle cobaltites at low temperatures has been described. The precursors, hydrazinium metal hydrazine carboxylate hydrates, N2H5M1/3Co2/3(N2H3COO)3 · H2O, where M = Mg, Mn, Fe, Co, Ni, and Zn, decompose in air <250°C to yield corresponding metal cobaltites, MCo2O4. Formation of cobaltites has been confirmed by thermogravimetry (TG) weight loss, IR, and X-ray diffraction. Combustion of the precursor in air yields fine-particle cobaltites with surface areas in the range of 12–115 m2g−1 and particle sizes of 1–40 μm. Low decomposition temperatures of the precursors accompanied by the evolution of large amounts of gases appear to control the particle size of the cobaltites.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synthesis of fine particle α-alumina and related oxide materials such as MgAl2O4, CaAl2O4, Y3Al5O12 (YAG), Image , β′-alumina, LaAlO3 and ruby powder (Image ) has been achieved at low temperatures (500°C) by the combustion of corresponding metal nitrate-urea mixtures. Solid combustion products have been identified by their characteristic X-ray diffraction patterns. The fine particle nature of α-alumina and related oxide materials has been investigated using SEM, TEM, particle size analysis and surface area measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

P-Nickel hydroxide comprises a long range periodic arrangement of atoms with a stacking sequence of AC AC AC-having an ideal composition Ni(OH)(2). Variation in the preparative conditions can lead to the changes in the stacking sequence (AC AC BA CB AC AC or AC AC AB AC AC) This type of variation in stacking sequence can result in the formation of stacking fault in nickel hydroxide. The stability of the stacking fault depends on the free energy content of the sample. Stacking faults in nickel hydroxide is essential for better electrochemical activity. Also there are reports correlating particle size to the better electrochemical activity. Here we present the effect of crystallite size on the stacking faulted nickel hydroxide samples. The electrochemical performance of stacking faulted nickel hydroxide with small crystallite size exchanges 0.8e/Ni, while the samples with larger crystallite size exchange 0.4e/Ni. Hence a right combination of crystallite size and stacking fault content has to be controlled for good electrochemical activity of nickel hydroxide. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Here we report on the magnetic properties of iron carbide nanoparticles embedded in a carbon matrix. Granular distributions of nanoparticles in an inert matrix, of potential use in various applications, were prepared by pyrolysis of organic precursors using the thermally assisted chemical vapour deposition method. By varying the precursor concentration and preparation temperature, compositions with varying iron concentration and nanoparticle sizes were made. Powder x-ray diffraction, transmission electron microscopy and Mossbauer spectroscopy studies revealed the nanocrystalline iron carbide (Fe3C) presence in the partially graphitized matrix. The dependence of the magnetic properties on the particle size and temperature (10 K < T < 300 K) were studied using superconducting quantum interference device magnetometry. Based on the affect of surrounding carbon spins, the observed magnetic behaviour of the nanoparticle compositions, such as the temperature dependence of magnetization and coercivity, can be explained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report a simple and rapid process for the room-temperature synthesis of gold nanoparticles using tannic acid, a green reagent, as both the reducing and stabilising agent. We systematically investigated the effect of pH on the size distribution of nanoparticles synthesized. Based on induction time and zeta- potential measurements, we show that particle size distribution is controlled by a fine balance between the rates of reduction (determined by the initial pH of reactants) and coalescence (determined by the pH of the reaction mixture) in the initial period of growth. This insight led to the optimal batch process for size-controlled synthesis of 2-10 nm gold nanoparticles - slow addition (within 10 minutes) of chloroauric acid into tannic acid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Barium metazirconate (BaZrO3) fine powder has been produced by thermally decomposing a molecular precursor, barium bis(citrato)oxozirconate(IV) tetrahydrate at about 700-degrees-C. The precursor, Ba[ZrO(C6H6O7)2] . 4H2O (BZO) has been synthesized and characterized by employing a combination of spectroscopic and thermoanalytical techniques. The precursor undergoes thermal decomposition in three major stages: (i) dehydration to give an anhydrous barium zirconyl citrate, (ii) decomposition of the anhydrous citrate in a multistep process to form an ionic oxycarbonate intermediate, Ba2Zr2O5CO3, and (iii) decomposition of the oxycarbonate to produce BaZrO3 fine powder. The particle size of the resultant BaZrO3 is about 0.2 mum, and the surface area is found to be 4.0 m2 g-1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The problem of spurious increase in volume fraction of second-phase particles during computer simulations of coarsening is examined. The origin of this problem is traced to the use of too long a time step (used for numerical integration of growth rates with respect to time) which leads to small particles with large negative growth rates shrinking to negative radii at the end of the time step. Such a shrinkage to negative sizes has the effect of pumping solute into the system. It is therefore suggested that the length of the time step be chosen in accordance with the size of the smallest particle present in the system. It is shown that spurious increase in particle Volume has a significant effect on the particle size distributions in the scaling regime (making them broader and more skewed in the Lifshitz-Slyozov-Wagner model). Its effect on coarsening kinetics, however, is found to be small.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Particulate reinforcements for polymers are selected with dual objective of improving composite properties and save on the total cost of the system. In the present study fly ash, an industrial waste with good properties is used as filler in epoxy and the compressive properties of such composites are studied. Particle surfaces are treated chemically using a silane-coupling agent to improve the compatibility with the matrix. The compressive properties of these are compared with those made of untreated fly ash particulates. Furthermore properties of fly ash composites with two different average particle sizes are first compared between themselves and then with those made using the as-received bimodal nature of particle size distribution. Microscopic observations of compression tested samples revealed a better adherence of the particles with the matrix in case of treated particles and regards the size effect the composites with lower average particle size showed improved strength at higher filler contents. Experimental values of strengths and modulii are compared with some of the theoretical models for composite properties. (C) 2002 Kluwer Academic Publishers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The particle and fluid velocity fluctuations in a turbulent gas-particle suspension are studied experimentally using two-dimensional particle image velocimetry with the objective of comparing the experiments with the predictions of fluctuating force simulations. Since the fluctuating force simulations employ force distributions which do not incorporate the modification of fluid turbulence due to the particles, it is of importance to quantify the turbulence modification in the experiments. For experiments carried out at a low volume fraction of 9.15 x 10(-5) (mass loading is 0.19), where the viscous relaxation time is small compared with the time between collisions, it is found that the gas-phase turbulence is not significantly modified by the presence of particles. Owing to this, quantitative agreement is obtained between the results of experiments and fluctuating force simulations for the mean velocity and the root mean square of the fluctuating velocity, provided that the polydispersity in the particle size is incorporated in the simulations. This is because the polydispersity results in a variation in the terminal velocity of the particles which could induce collisions and generate fluctuations; this mechanism is absent if all of the particles are of equal size. It is found that there is some variation in the particle mean velocity very close to the wall depending on the wall-collision model used in the simulations, and agreement with experiments is obtained only when the tangential wall-particle coefficient of restitution is 0.7. The mean particle velocity is in quantitative agreement for locations more than 10 wall units from the wall of the channel. However, there are systematic differences between the simulations and theory for the particle concentrations, possibly due to inadequate control over the particle feeding at the entrance. The particle velocity distributions are compared both at the centre of the channel and near the wall, and the shape of the distribution function near the wall obtained in experiments is accurately predicted by the simulations. At the centre, there is some discrepancy between simulations and experiment for the distribution of the fluctuating velocity in the flow direction, where the simulations predict a bi-modal distribution whereas only a single maximum is observed in the experiments, although both distributions are skewed towards negative fluctuating velocities. At a much higher particle mass loading of 1.7, where the time between collisions is smaller than the viscous relaxation time, there is a significant increase in the turbulent velocity fluctuations by similar to 1-2 orders of magnitude. Therefore, it becomes necessary to incorporate the modified fluid-phase intensity in the fluctuating force simulation; with this modification, the mean and mean-square fluctuating velocities are within 20-30% of the experimental values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The photoelectrode of Eosin-Y sensitised DSSC was modified by incorporating Au-nanoparticles to enhance the power conversion efficiency via scattering from surface plasmon polaritons. Size dependence of Au nanoparticle on conversion efficiency was performed in DSSC for the first time by varying the particle size from 20 to 94 nm. It was found that, the conversion efficiency is highly dependent on the size of the Au nanoparticles. For larger particles (>50 nm), the efficiency was found to be increased due to constructive interference between the transmitted and scattered waves from the Au nanoparticle while for smaller particles, the efficiency decreases due to destructive interference. Also a reduction in the V-oc was observed in general, due to the negative shifting of the TiO2 Fermi level on the adsorption of Au nanoparticle. This shift was negligible for larger particles. When 94 nm size particles were employed the conversion efficiency was doubled from 0.74% to 1.52%. This study points towards the application of the scattering effect of metal nanoparticle to enhance the conversion efficiency in DSSCs. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A careful comparison of the experimental results reported in the literature reveals different variations of the melting temperature even for the same materials. Though there are different theoretical models, thermodynamic model has been extensively used to understand different variations of size-dependent melting of nanoparticles. There are different hypotheses such as homogeneous melting (HMH), liquid nucleation and growth (LNG) and liquid skin melting (LSM) to resolve different variations of melting temperature as reported in the literature. HMH and LNG account for the linear variation where as LSM is applied to understand the nonlinear behaviour in the plot of melting temperature against reciprocal of particle size. However, a bird's eye view reveals that either HMH or LSM has been extensively used by experimentalists. It has also been observed that not a single hypothesis can explain the size-dependent melting in the complete range. Therefore we describe an approach which can predict the plausible hypothesis for a given data set of the size-dependent melting temperature. A variety of data have been analyzed to ascertain the hypothesis and to test the approach.