445 resultados para lipopolysaccharide-induced fever
Resumo:
Oxovanadium(1V) porphyrins appended with crown ether (benzo-15-crown-5) at the 5 (mono), the 5 and 10115 (cis/trans bis), the 5, 10, and 15 (tris), and the 5, 10, 15, and 20 (tetrakis) positions have been synthesized. The cation complexation behavior of these cavity-bearing porphyrins has been studied by using optical aborption and ESR spectral methods. The cations K+, Cs+, NH4+, and Ba2+, which require two crown ether cavities for complexation, induce dimerization of the porphyrins. The cation-induced dimerization constants for a representative tetrasubstituted porphyrin vary as K+ > Ba2+ > Cs+ - NH4+, and the relative stabilities of the dimers are dependent on the type of the substitution, tetrakis > tris > cis bis. ESR spectra recorded at a sample temperature of 77 K have low-field components attributed to Ah& = f 2 transitions, providing further evidence for the existence of dimers in solutions. The eclipsed sandwich dimers have V-V distances in the range 4.70 A. The relative distributions of oxovanadium crown porphyrins in terms of monomeric and dimeric forms rest on the geometric dispositions of the crown ether appendages.
Resumo:
In a multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) by Mycobacterium bovis bacillus Calmette-Guerin (BCG) may act as an important influencing factor for the effective host immunity. We here demonstrate that M. bovis BCG-triggered TLR2-dependent signaling leads to COX-2 and PGE2 expression in vitro in macrophages and in vivo in mice. Further, the presence of PGE2 could be demonstrated in sera or cerebrospinal fluid of tuberculosis patients. The induced COX-2 expression in macrophages is dependent on NF-kappa B activation, which is mediated by inducible NO synthase (iNOS)/NO-dependent participation of the members of Notch1-PI-3K signaling cascades as well as iNOS-independent activation of ERK1/2 and p38 MAPKs. Inhibition of iNOS activity abrogated the M. bovis BCG ability to trigger the generation of Notch1 intracellular domain (NICD), a marker for Notch1 signaling activation, as well as activation of the PI-3K signaling cascade. On the contrary, treatment of macrophages with 3-morpholinosydnonimine, a NO donor, resulted in a rapid increase in generation of NICD, activation of PI-3K pathway, as well as the expression of COX-2. Stable expression of NICD in RAW 264.7 macrophages resulted in augmented expression of COX-2. Further, signaling perturbations suggested the involvement of the cross-talk of Notch1 with members with the PI-3K signaling cascade. These results implicate the dichotomous nature of TLR2 signaling during M. bovis BCG-triggered expression of COX-2. In this perspective, we propose the involvement of iNOS/NO as one of the obligatory, early, proximal signaling events during M. bovis BCG-induced COX-2 expression in macrophages.
Resumo:
O-Acetylsalicylamide (Ia), C9H9NO3, M r =179.18, monoclinic, P2Jc, a=8.155(5), b=8.571 (2), c= 13.092 (3)A, fl=99.54 (5) ° , V= 902.4(6)A 3, Z=4, Dm=l.31, Dx=l.319gcm -3, 2(Mo Ka) = 0.71069 A,/~ = 1.08 cm -1, F(000) = 376, T = 295 K, R = 0.076 for 1604 reflections. O-Benzoylsalicylamide (Ib), C14HtlNO 3, M,=241.2, monoclinic, P2t/e, a=9.423(1), b=5.116(1), e= 26.424 (2) A, fl= 103.97 (1)% V= 1236.2 (3)/~3, Z= 4, D~ = 1.28, D x = 1.296 gcm -3, ,;L(Cu Ks) = 1.5418 A, p = 7.71 cm-', F(000) = 504, T= 295 K, R =0.050 for 2115 reflections. The dihedral angles between the amide group and the benzene ring are 39.9 ° (Ia) and 37.9 ° (Ib), whereas between the acyl group and the benzene ring they are 78.1 ° (Ia) and 93.4 ° (Ib). The differences in the packing of the two structures are brought out in terms of the observed hydrogen-bonding patterns. Based on the crystallographic results, an intramolecular mechanism for the migration of the acyl group from the O to the N position is suggested in both compounds.
Resumo:
Electromagnetically induced transparency (EIT) experiments in Lambda-type systems benefit from the use of hot vapor where the thermal averaging results in reducing the width of the EIT resonance well below the natural linewidth. Here, we demonstrate a technique for further reducing the EIT width in room-temperature vapor by the application of a small longitudinal magnetic field. The Zeeman shift of the energy levels results in the formation of several shifted subsystems; the net effect is to create multiple EIT dips each of which is significantly narrower than the original resonance. We observe a reduction by a factor of 3 in the D2 line of 87Rb with a field of 3.2 G.
Resumo:
Three oxo-bridged diiron(III) complexes of L-histidine and heterocyclic bases [Fe-2(mu-O)(L-his)(2)(B)(2)](ClO4)(2) (1-3), where B is 2,2'-bipyridine (bpy),1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), were prepared and characterized. The bpy complex 1 was structurally characterized by X-ray crystallography. The molecular structure showed a {Fe-2(mu-O)} core in which iron(III) in a FeN4O2 coordination is bound to tridentate monoanionic L-histidine and bidentate bpy ligands. The Fe center dot center dot center dot Fe distance is similar to 3.5 angstrom. The Fe-O-Fe unit is essentially linear, giving a bond angle of similar to 172 degrees. The complexes showed irreversible cyclic voltammetric cathodic response near -0.1 V vs. SCE in H2O-0.1 M KCl. The binuclear units displayed antiferromagnetic interaction between two high-spin (S = 5/2) iron(III) centers giving a -J value of -110 cm(-1). The complexes showed good DNA binding propensity giving a binding constant value of similar to 10(5) M-1. Isothermal titration calorimetric data indicated single binding mode to the DNA. The binding was found to be driven by negative free energy change and enthalpy. The dpq complex 3 showed oxidative double-strand DNA cleavage on exposure to UV-A and visible light. The phen complex 2 displayed single-strand photocleavage of DNA. The DNA double-strand breaks were rationalized from theoretical molecular docking calculations. Mechanistic investigations showed formation of hydroxyl radicals as the reactive species through photodecarboxylation of the L-histidine ligand. The complexes exhibited good binding propensity to bovine serum albumin (BSA) protein in Tris-HCl/NaCl buffer medium. The dpq complex 3 showed UV-A light-induced site-specific oxidative BSA cleavage forming fragments of similar to 45 kDa and similar to 20 kDa molecular weights via SOH pathway.
Resumo:
The pressure and temperature dependence of the electrical resistivity of bulk glassy Ge20Te80 is reported. The effect of annealing is also studied. The glass undergoes a polymorphous or congruent crystallization under high pressures. The high pressure phase is found to have fcc structure with Image . Under thermal treatment the glass undergoes the double stage crystallization. The sample annealed at the first crystallization temperature shows a pressure induced semiconductor-to-metal transition at 4.0 GPa pressure and the crystalline Ge20Te80 samples show the transition at 7 GPa pressure.
Instabilities induced by variation of Brunt-Vaisala frequency in compressible stratified shear flows
Resumo:
The stability characteristics of a Helmholtz velocity profile in a stably stratified, compressible fluid in the presence of a lower rigid boundary are studied. A jump in the Brunt-Vaisala frequency at a level different from the shear zone is introduced and the variation of the Brunt-Vaisala frequency with respect to the vertical coordinate in the middle layer of the three-layered model is considered. An analytic solution in each of the layers is obtained, and the dispersion relation is solved numerically for parameters relevant to the model. The effect of shear in the lowermost layer of the three-layered model for a Boussinesq fluid is discussed. The results are compared with the earlier studies of Lindzen and Rosenthal, and Sachdev and Satya Narayanan. In the present model, new unstable modes with larger growth rates are obtained and the most unstable gravity wave modes are found to agree closely with the observed ones at various heights. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
The results of extensive transport studies in localized regime of mesoscopic two-dimensional electron systems (2DES) with varying disorder are presented. A quick overview of previously achieved result is given. The main focus is on the observation of density dependent instabilities manifested by strong resistance oscillations induced by high perpendicular magnetic fields B-perpendicular to. While the amplitude of the oscillations is strongly enhanced with increasing B-perpendicular to, their position in electron density remains unaffected. The temperature dependence of resistivity shows a transition from an activated behaviour at high temperature to a saturated behaviour at low T. In the positions of resistance minima, the T dependence can even become metal-like (d rho/dT > 0). The activation energies obtained from the high T behaviour exhibit a formation of plateaux in connection with the resistance oscillations when analyzed as a function of electron density. We suggest the interplay between a strongly interacting electron phase and the background disorder as a possible explanation for our observation.
Resumo:
Abstract is not available.
Resumo:
The enzyme carnitine acetyltransferase (acetyl-CoA:carnitine O-acetyltransferase, EC 2.3.1.7) has been purified to homogeneity from hepatic mitochondria of clofibrate-fed rats. It is a protein of molecular weight 56 000 composed of two non-identical subunits of molecular weight 34 000 and 25 000. The enzyme is inhibited by palmityl-CoA as well as acetyl carnitine. The inhibition by fatty acyl-CoA is competitive with respect to both the substrates, carnitine and acetyl-CoA. The inhibition by acetylcarnitine is reversed by carnitine but not by acetyl-CoA.
Resumo:
Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced B2 -> body-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of similar to 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of similar to 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 angstrom, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.
Resumo:
Irreversible, Pressure induced, quasicrystal-to-crystal transitions are observed for the first time in melt spun alloys at 4.9 GPa for Al 78 Mn22 and 9.3 GPa for Al86 Mn14 by monitoring the electrical resistivities of these alloys as a function of pressure. Electron diffraction and x-ray measurements are used to show that these quasicrystalline phases have icosohedral point group symmetry. The crystalline phases which appear at high pressures are identified as h.c.p. for Al78 Mn22 and orthorhombic for Al86 Mn14.
Resumo:
Induced Cotton effects have been observed in the visible region on interaction of bilirubin with chiral mono- and diamines and poly-l-lysine. At alkaline pH distinct CD spectra are observed for bilirubin bound to the α-helical and β-sheet conformation of poly-l-lysine, which differ from that observed for the pigment bound to human serum albumin. The CD pattern observed on binding to N-acetyl-Lys-N1-methylamide in CH2Cl2 and dioxane is different from that observed in the presence of l-Ala-NH-(CH2)6-NH-l-Ala in dioxane. The latter case resembles the spectrum observed in the presence of human serum albumin. Binding to the helical polypeptide melittin and the antiparallel β-sheet peptide, gramicidin S, in aqueous solutions results in opposite signs of the bilirubin CD bands. The quenching of tryptophan fluorescence in melittin, in aqueous solution and enhancement of bilirubin fluorescence in dioxane on binding to gramicidin S have been used to monitor pigment-peptide interactions. The results suggest the utility of bilirubin as a conformational probe.
Resumo:
The pressure dependence of the electrical of the electrical resistivity of bulk GeSe2 glass shows a semiconductor-to-metal transition at 7 GPa pressure. The high pressure phase is examined using he x-ray diffractometer and is found to be crystalline, with a face-centered cubic structure having a =4.06A. The electrical conductivity has also been studied as a function of temperature at various pressures.