49 resultados para large transportation network


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we present a novel application of a quantum clustering (QC) technique to objectively cluster the conformations, sampled by molecular dynamics simulations performed on different ligand bound structures of the protein. We further portray each conformational population in terms of dynamically stable network parameters which beautifully capture the ligand induced variations in the ensemble in atomistic detail. The conformational populations thus identified by the QC method and verified by network parameters are evaluated for different ligand bound states of the protein pyrrolysyl-tRNA synthetase (DhPylRS) from D. hafniense. The ligand/environment induced re-distribution of protein conformational ensembles forms the basis for understanding several important biological phenomena such as allostery and enzyme catalysis. The atomistic level characterization of each population in the conformational ensemble in terms of the re-orchestrated networks of amino acids is a challenging problem, especially when the changes are minimal at the backbone level. Here we demonstrate that the QC method is sensitive to such subtle changes and is able to cluster MD snapshots which are similar at the side-chain interaction level. Although we have applied these methods on simulation trajectories of a modest time scale (20 ns each), we emphasize that our methodology provides a general approach towards an objective clustering of large-scale MD simulation data and may be applied to probe multistate equilibria at higher time scales, and to problems related to protein folding for any protein or protein-protein/RNA/DNA complex of interest with a known structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Representatives of several Internet access providers have expressed their wish to see a substantial change in the pricing policies of the Internet. In particular, they would like to see content providers pay for use of the network, given the large amount of resources they use. This would be in clear violation of the �network neutrality� principle that had characterized the development of the wireline Internet. Our first goal in this paper is to propose and study possible ways of implementing such payments and of regulating their amount. We introduce a model that includes the internaut�s behavior, the utilities of the ISP and of the content providers, and the monetary flow that involves the internauts, the ISP and content provider, and in particular, the content provider�s revenues from advertisements. We consider various game models and study the resulting equilibrium; they are all combinations of a noncooperative game (in which the service and content providers determine how much they will charge the internauts) with a cooperative one - the content provider and the service provider bargain with each other over payments to one another. We include in our model a possible asymmetric bargaining power which is represented by a parameter (that varies between zero to one). We then extend our model to study the case of several content providers. We also provide a very brief study of the equilibria that arise when one of the content providers enters into an exclusive contract with the ISP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A single-source network is said to be memory-free if all of the internal nodes (those except the source and the sinks) do not employ memory but merely send linear combinations of the incoming symbols (received at their incoming edges) on their outgoing edges. Memory-free networks with delay using network coding are forced to do inter-generation network coding, as a result of which the problem of some or all sinks requiring a large amount of memory for decoding is faced. In this work, we address this problem by utilizing memory elements at the internal nodes of the network also, which results in the reduction of the number of memory elements used at the sinks. We give an algorithm which employs memory at all the nodes of the network to achieve single- generation network coding. For fixed latency, our algorithm reduces the total number of memory elements used in the network to achieve single- generation network coding. We also discuss the advantages of employing single-generation network coding together with convolutional network-error correction codes (CNECCs) for networks with unit- delay and illustrate the performance gain of CNECCs by using memory at the intermediate nodes using simulations on an example network under a probabilistic network error model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural network models of associative memory exhibit a large number of spurious attractors of the network dynamics which are not correlated with any memory state. These spurious attractors, analogous to "glassy" local minima of the energy or free energy of a system of particles, degrade the performance of the network by trapping trajectories starting from states that are not close to one of the memory states. Different methods for reducing the adverse effects of spurious attractors are examined with emphasis on the role of synaptic asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digest caches have been proposed as an effective method tospeed up packet classification in network processors. In this paper, weshow that the presence of a large number of small flows and a few largeflows in the Internet has an adverse impact on the performance of thesedigest caches. In the Internet, a few large flows transfer a majority ofthe packets whereas the contribution of several small flows to the totalnumber of packets transferred is small. In such a scenario, the LRUcache replacement policy, which gives maximum priority to the mostrecently accessed digest, tends to evict digests belonging to the few largeflows. We propose a new cache management algorithm called SaturatingPriority (SP) which aims at improving the performance of digest cachesin network processors by exploiting the disparity between the number offlows and the number of packets transferred. Our experimental resultsdemonstrate that SP performs better than the widely used LRU cachereplacement policy in size constrained caches. Further, we characterizethe misses experienced by flow identifiers in digest caches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scalable Networks on Chips (NoCs) are needed to match the ever-increasing communication demands of large-scale Multi-Processor Systems-on-chip (MPSoCs) for multi media communication applications. The heterogeneous nature of application specific on-chip cores along with the specific communication requirements among the cores calls for the design of application-specific NoCs for improved performance in terms of communication energy, latency, and throughput. In this work, we propose a methodology for the design of customized irregular networks-on-chip. The proposed method exploits a priori knowledge of the applications communication characteristic to generate an optimized network topology and corresponding routing tables.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the emergence of voltage scaling as one of the most powerful power reduction techniques, it has been important to support voltage scalable statistical static timing analysis (SSTA) in deep submicrometer process nodes. In this paper, we propose a single delay model of logic gate using neural network which comprehensively captures process, voltage, and temperature variation along with input slew and output load. The number of simulation programs with integrated circuit emphasis (SPICE) required to create this model over a large voltage and temperature range is found to be modest and 4x less than that required for a conventional table-based approach with comparable accuracy. We show how the model can be used to derive sensitivities required for linear SSTA for an arbitrary voltage and temperature. Our experimentation on ISCAS 85 benchmarks across a voltage range of 0.9-1.1V shows that the average error in mean delay is less than 1.08% and average error in standard deviation is less than 2.85%. The errors in predicting the 99% and 1% probability point are 1.31% and 1%, respectively, with respect to SPICE. The two potential applications of voltage-aware SSTA have been presented, i.e., one for improving the accuracy of timing analysis by considering instance-specific voltage drops in power grids and the other for determining optimum supply voltage for target yield for dynamic voltage scaling applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body that undergoes such undulatory motions. In the angulliform mode, or the eel type, the entire body undergoes undulatory motions in the form of a travelling wave that goes from head to tail, while in the other extreme case, the thunniform mode, only the rear tail (caudal fin) undergoes lateral oscillations. The thunniform mode of swimming is essentially based on the lift force generated by the airfoil like crosssection of the fish tail as it moves laterally through the water, while the anguilliform mode may be understood using the “reactive theory” of Lighthill. In pulsed jet propulsion, adopted by squids and salps, there are two components to the thrust; the first due to the familiar ejection of momentum and the other due to an over-pressure at the exit plane caused by the unsteadiness of the jet. The flow immediately downstream of the body in all three modes consists of vortex rings; the differentiating point being the vastly different orientations of the vortex rings. However, since all the bodies are self-propelling, the thrust force must be equal to the drag force (at steady speed), implying no net force on the body, and hence the wake or flow downstream must be momentumless. For such bodies, where there is no net force, it is difficult to directly define a propulsion efficiency, although it is possible to use some other very different measures like “cost of transportation” to broadly judge performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

V. S. Borkar’s work was supported in part by grant number III.5(157)/99-ET from the Department of Science and Technology, Government of India. D. Manjunath’s work was supported in part by grant number 1(1)/2004-E-Infra from the Ministry of Information Technology, Government of India.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Convergence of the vast sequence space of proteins into a highly restricted fold/conformational space suggests a simple yet unique underlying mechanism of protein folding that has been the subject of much debate in the last several decades. One of the major challenges related to the understanding of protein folding or in silico protein structure prediction is the discrimination of non-native structures/decoys from the native structure. Applications of knowledge-based potentials to attain this goal have been extensively reported in the literature. Also, scoring functions based on accessible surface area and amino acid neighbourhood considerations were used in discriminating the decoys from native structures. In this article, we have explored the potential of protein structure network (PSN) parameters to validate the native proteins against a large number of decoy structures generated by diverse methods. We are guided by two principles: (a) the PSNs capture the local properties from a global perspective and (b) inclusion of non-covalent interactions, at all-atom level, including the side-chain atoms, in the network construction accommodates the sequence dependent features. Several network parameters such as the size of the largest cluster, community size, clustering coefficient are evaluated and scored on the basis of the rank of the native structures and the Z-scores. The network analysis of decoy structures highlights the importance of the global properties contributing to the uniqueness of native structures. The analysis also exhibits that the network parameters can be used as metrics to identify the native structures and filter out non-native structures/decoys in a large number of data-sets; thus also has a potential to be used in the protein `structure prediction' problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Critical applications like cyclone tracking and earthquake modeling require simultaneous high-performance simulations and online visualization for timely analysis. Faster simulations and simultaneous visualization enable scientists provide real-time guidance to decision makers. In this work, we have developed an integrated user-driven and automated steering framework that simultaneously performs numerical simulations and efficient online remote visualization of critical weather applications in resource-constrained environments. It considers application dynamics like the criticality of the application and resource dynamics like the storage space, network bandwidth and available number of processors to adapt various application and resource parameters like simulation resolution, simulation rate and the frequency of visualization. We formulate the problem of finding an optimal set of simulation parameters as a linear programming problem. This leads to 30% higher simulation rate and 25-50% lesser storage consumption than a naive greedy approach. The framework also provides the user control over various application parameters like region of interest and simulation resolution. We have also devised an adaptive algorithm to reduce the lag between the simulation and visualization times. Using experiments with different network bandwidths, we find that our adaptive algorithm is able to reduce lag as well as visualize the most representative frames.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Advances in genomics technologies are providing a very large amount of data on genome-wide gene expression profiles, protein molecules and their interactions with other macromolecules and metabolites. Molecular interaction networks provide a useful way to capture this complex data and comprehend it. Networks are beginning to be used in drug discovery, in many steps of the modern discovery pipeline, with large-scale molecular networks being particularly useful for the understanding of the molecular basis of the disease. Areas covered: The authors discuss network approaches used for drug target discovery and lead identification in the drug discovery pipeline. By reconstructing networks of targets, drugs and drug candidates as well as gene expression profiles under normal and disease conditions, the paper illustrates how it is possible to find relationships between different diseases, find biomarkers, explore drug repurposing and study emergence of drug resistance. Furthermore, the authors also look at networks which address particular important aspects such as off-target effects, combination-targets, mechanism of drug action and drug safety. Expert opinion: The network approach represents another paradigm shift in drug discovery science. A network approach provides a fresh perspective of understanding important proteins in the context of their cellular environments, providing a rational basis for deriving useful strategies in drug design. Besides drug target identification and inferring mechanism of action, networks enable us to address new ideas that could prove to be extremely useful for new drug discovery, such as drug repositioning, drug synergy, polypharmacology and personalized medicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With ever increasing network speed, scalable and reliable detection of network port scans has become a major challenge. In this paper, we present a scalable and flexible architecture and a novel algorithm, to detect and block port scans in real time. The proposed architecture detects fast scanners as well as stealth scanners having large inter-probe periods. FPGA implementation of the proposed system gives an average throughput of 2 Gbps with a system clock frequency of 100 MHz on Xilinx Virtex-II Pro FPGA. Experimental results on real network trace show the effectiveness of the proposed system in detecting and blocking network scans with very low false positives and false negatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, Ebrahimi and Fragouli proposed an algorithm to construct scalar network codes using small fields (and vector network codes of small lengths) satisfying multicast constraints in a given single-source, acyclic network. The contribution of this paper is two fold. Primarily, we extend the scalar network coding algorithm of Ebrahimi and Fragouli (henceforth referred to as the EF algorithm) to block network-error correction. Existing construction algorithms of block network-error correcting codes require a rather large field size, which grows with the size of the network and the number of sinks, and thereby can be prohibitive in large networks. We give an algorithm which, starting from a given network-error correcting code, can obtain another network code using a small field, with the same error correcting capability as the original code. Our secondary contribution is to improve the EF Algorithm itself. The major step in the EF algorithm is to find a least degree irreducible polynomial which is coprime to another large degree polynomial. We suggest an alternate method to compute this coprime polynomial, which is faster than the brute force method in the work of Ebrahimi and Fragouli.