41 resultados para isopentenyl transferase
Resumo:
Sequence specific resonance assignments have been obtained for H-1, C-13 and N-15 nuclei of the 21 kDa (188 residues long) glutamine amido transferase subunit of guanosine monophosphate synthetase from Methanocaldococcus jannaschii. From an analysis of H-1 and C-13(alpha), C-13(beta) secondary chemical shifts, (3) JH(N)H(alpha) scalar coupling constants and sequential, short and medium range H-1-H-1 NOEs, it was deduced that the glutamine amido transferase subunit has eleven strands and five helices as the major secondary structural elements in its tertiary structure.
Resumo:
The genome of Leishmania major encodes a type II fatty acid biosynthesis pathway for which no structural or biochemical information exists. Here, for the first time, we have characterized the central player of the pathway, the acyl carrier protein (LmACP), using nuclear magnetic resonance (NMR). Structurally, the LmACP molecule is similar to other type II ACPs, comprising a four-helix bundle, enclosing a hydrophobic core. Dissimilarities in sequence, however, exist in helix II (recognition helix) of the protein. The enzymatic conversion of apo-LmACP into the holo form using type I (Escherichia coli AcpS) and type II (Sfp type) phosphopantetheinyl transferases (PPTs) is relatively slow. Mutagenesis studies underscore the importance of the residues present at the protein protein interaction interface of LmACP in modulating the activity of PPTs. Interestingly, the cognate PPT for this ACP, the L. major 4'-phosphopantetheinyl transferase (LmPPT), does not show any enzymatic activity toward it, though it readily converts other type I and type II ACPs into their holo forms. NMR chemical shift perturbation studies suggest a moderately tight complex between LmACP and its cognate PPT, suggesting inhibition. We surmise that the unique surface of LmACP might have evolved to complement its cognate enzyme (LmPPT), possibly for the purpose of regulation.
Resumo:
Post-transcriptional modification of viral mRNA is essential for the translation of viral proteins by cellular translation machinery. Due to the cytoplasmic replication of Paramyxoviruses, the viral-encoded RNA-dependent RNA polymerase (RdRP) is thought to possess all activities required for mRNA capping and methylation. In the present work, using partially purified recombinant RNA polymerase complex of rinderpest virus expressed in insect cells, we demonstrate the in vitro methylation of capped mRNA. Further, we show that a recombinant C-terminal fragment (1717-2183 aa) of L protein is capable of methylating capped mRNA, suggesting that the various post-transcriptional activities of the L protein are located in independently folding domains.
Resumo:
The entire extracellular domain of the human heat-stable enterotoxin (ST) receptor as well as a truncated N-terminal domain were cloned as glutathione S-transferase fusion proteins and expressed in Escherichia coli. The recombinant fusion proteins were purified from both the cytosol and the inclusion body fractions by selective detergent extraction followed by glutathione-agarose affinity chromatography. The purified protein, corresponding to the entire extracellular domain, bound the stable toxin peptide with an affinity comparable to that of the native receptor characterized from the human colonic T84 cell line. No binding was observed with the N-terminal truncated fragment of the receptor under similar conditions, Polyclonal antibodies were raised to the entire extracellular domain fusion protein as well as the truncated extracellular domain fusion protein, and the antibodies were purified by affinity chromatography. Addition of the purified antibodies to T84 cells inhibited ST binding and abolished ST-mediated cGMP production, indicating that critical epitopes involved in ligand interaction are present in the N-terminal fragment of the receptor, Purified antibodies recognized a single protein of M(r) 160,000 Da on Western blotting with T84 membranes, corresponding to a size of the native glycosylated receptor in T84 cells. These studies are the first report of the expression, purification, and characterization of any member of the guanylyl cyclase family of receptors in E. coli and show that binding of the toxin to the extracellular domain of the receptor is possible in the absence of any posttranslational modifications such as glycosylation. The recombinant fusion proteins as well as the antibodies that we have generated could serve as useful tools in the identification of critical residues of the extracellular domain involved in ligand interaction.
Resumo:
Augmentation of hexosamine biosynthetic pathway (HBP) and endoplasmic reticulum (ER) stress were independently related to be the underlying causes of insulin resistance. We hypothesized that there might be a molecular convergence of activated HBP and ER stress pathways leading to insulin resistance. Augmentation of HBP in L6 skeletal muscle cells either by pharmacological (glucosamine) or physiological (high-glucose) means, resulted in increased protein expression of ER chaperones (viz., Grp78, Calreticulin, and Calnexin), UDP-GlcNAc levels and impaired insulin-stimulated glucose uptake. Cells silenced for O-glycosyl transferase (OGT) showed improved insulin-stimulated glucose uptake (P < 0.05) but without any effect on ER chaperone upregulation. While cells treated with either glucosamine or high-glucose exhibited increased JNK activity, silencing of OGT resulted in inhibition of JNK and normalization of glucose uptake. Our study for the first time, demonstrates a molecular convergence of O-glycosylation processes and ER stress signals at the cross-road of insulin resistance in skeletal muscle.
Resumo:
The presence of 1-methyl adenine in transfer RNA is a feature that Mycobacterium smegmatis shares with only a few other prokaryotes. The enzyme 1-methyl adenine tRNA methyl transferase from this source has been purified and the preliminary results show the presence of two activity peaks with different substrate specificity.
Resumo:
N6-({Delta}2-Isopentenyl) adenosine antibodies were used for the isolation of free cytokinins and cytokinin-containing tRNAs from parts of Cucumis sativus L. var. Guntur seedlings and for the estimation of cytokinins in them. Immobilized N6-({Delta}2-isopentenyl) adenosine antibodies retained tRNAs containing N6-({Delta}2-isopentenyl) adenosine and N6-(4-hydroxy-3-methylbut-2-enyl) adenosine with equal efficiencies. There were at least five cytokinins in the free form in cucumber seedlings. N6-(4-Hydroxy-3-methylbut-2-enyl) adenosine, N6-({Delta}2-isopentenyl) adenosine, and N6-({Delta}2-isopentenyl) adenine were present at least to the extent of 80, 23, and 9 nanograms, respectively, in the cotyledons and 40, 6, and 3 nanograms, respectively, in the decotyledonated seedlings per gram of tissue. Only two cytokinins were found in the tRNAs of cucumber cotyledons, namely N6-({Delta}2-isopentenyl) adenosine and N6-(4-hydroxy-3-methylbut-2-enyl) adenosine in amounts of 12 and 318 nanograms, respectively, per gram of tissue. Immunoaffinity chromatographic analysis of radiolabeled aminoacyl tRNAs from cucumber cotyledons showed that tRNAPhe and tRNATyr contained cytokinins whereas tRNAAla did not.
Resumo:
Rat brain particulate fractions were shown to acylate [32P]1-alkyl-sn-glycero-3-phosphorylethanolamine (GPE). While the main product is 1-alkyl-2-acyl GPE, about 12 per cent of the radioactivity was also found in 1-alkenyl-2-acyl GPE. The acyl transferase activity was completely dependent on added ATP and CoA and it was localized mainly in the microsomal fraction. A comparative study of acyl transferase activities to 1-alkyl-, 1-alkenyl-, and 1-acyl GPE by crude mitochondrial fraction and microsomes of 10, 16 and 22-day-old rat brains showed a progressive increase in activity with development. In the 22-day-old rat brain the order of activity towards the three substrates is as follows: 1-acyl GPE ± 1-alkenyl GPE ± 1-alkyl GPE with a crude mitochondrial fraction and 1-acyl GPE ± 1-alkyl GPE ± 1-alkenyl GPE with microsomes.
Resumo:
The specific activity of glutamine synthetase (L-glutamate: ammonia ligase, EC 6.3.1.2) in surface grown Aspergillus niger was increased 3-5 fold when grown on L-glutamate or potassium nitrate, compared to the activity obtained on ammonium chloride. The levels of glutamine synthetase was regulated by the availability of nitrogen source like NH4 + , and further, the enzyme is repressed by increasing concentrations of NH4 +. In contrast to other micro-organisms, the Aspergillus niger enzyme was neither specifically inactivated by NH4+ or L-glutamine nor regulated by covalent modification.Glutamine synthetase from Aspergillus niger was purified to homogenity. The native enzyme is octameric with a molecular weight of 385,000±25,000. The enzyme also catalyses Mn2+ or Mg2+-dependent synthetase and Mn2+-dependent transferase activity.Aspergillus niger glutamine synthetase was completely inactivated by two mol of phenylglyoxal and one mol of N-ethylmaleimide with second order rate constants of 3·8 M–1 min–1 and 760 M–1 min–1 respectively. Ligands like Mg. ATP, Mg. ADP, Mg. AMP, L-glutamate NH4+, Mn2+ protected the enzyme against inactivation. The pattern of inactivation and protection afforded by different ligands against N-ethylamaleimide and phenylglyoxal was remarkably similar. These results suggest that metal ATP complex acts as a substrate and interacts with an arginine ressidue at the active site. Further, the metal ion and the free nucleotide probably interact at other sites on the enzyme affecting the catalytic activity.
Resumo:
The utilization of mevalonate for biogenesis of cholesterol shows rhythmic activity with a peak at midnight and the step responsible is likely to be between mevalonate and isopentenyl pyrophosphate.
Resumo:
Bacilysin is a non-ribosomally synthesized dipeptide antibiotic that is active against a wide range of bacteria and some fungi. Synthesis of bacilysin (L-alanine-[2,3-epoxycyclohexano-4]-L-alanine) is achieved by proteins in the bac operon, also referred to as the bacABCDE (ywfBCDEF) gene cluster in B. subtilis. Extensive genetic analysis from several strains of B. subtilis suggests that the bacABC gene cluster encodes all the proteins that synthesize the epoxyhexanone ring of L-anticapsin. These data, however, were not consistent with the putative functional annotation for these proteins whereby BacA, a prephenate dehydratase along with a potential isomerase/guanylyl transferase, BacB and an oxidoreductase, BacC, could synthesize L-anticapsin. Here we demonstrate that BacA is a decarboxylase that acts on prephenate. Further, based on the biochemical characterization and the crystal structure of BacB, we show that BacB is an oxidase that catalyzes the synthesis of 2-oxo-3-(4-oxocyclohexa-2,5-dienyl)propanoic acid, a precursor to L-anticapsin. This protein is a bi-cupin, with two putative active sites each containing a bound metal ion. Additional electron density at the active site of the C-terminal domain of BacB could be interpreted as a bound phenylpyruvic acid. A significant decrease in the catalytic activity of a point variant of BacB with a mutation at the N-terminal domain suggests that the N-terminal cupin domain is involved in catalysis.
Resumo:
An immunoscreening approach was used to isolate a strongly positive cDNA clone from an Entamoeba histolytica HK-9 cDNA expression library in the phage vector lambda ZAP-II. The 1.85-kb cDNA insert was found to be truncated and encoded the cysteine-rich, immunodominant domain of the antigenic 170-kDa subunit of the amebal galactose N-acetylgalactosamine binding lectin. This domain was expressed as a glutathione S-transferase fusion protein in Escherichia coli. Inclusion bodies of the recombinant protein were solubilized with Sarkosyl, and the protein was enriched from the crude bacterial extract by thiol-affinity chromatography. The recombinant protein was used to develop a rapid, sensitive, and specific avidin-biotin microtiter enzyme-linked immunosorbent assay (ELISA) for invasive amebiasis. Sera from 38 individuals suffering from invasive amebiasis, 12 individuals with noninvasive amebiasis, 44 individuals with other infections, and 27 healthy subjects were screened by the recombinant antigen-based ELISA. The sensitivity and specificity of the assay were 90.4 and 94.3%, respectively, which correlated well with those of an ELISA developed with crude amebal antigen (r = 0.94; P < 0.0001), as well as with those of a commercially available serodiagnostic ELISA (r = 0.92; P < 0.0001). Thus, the bacterially expressed recombinant lectin can replace the crude amebal extract as an antigen in the serodiagnosis of invasive amebiasis by using avidin-biotin microtiter ELISA.
Resumo:
Malaria causes a worldwide annual mortality of about a million people.Rapidly evolving drug-resistant species of the parasite have created a pressing need for the identification of new drug targets and vaccine candidates. By developing fractionation protocols to enrich parasites from low-parasitemia patient samples, we have carried out the first ever proteomics analysis of clinical isolates of early stages of Plasmodium falciparum (Pf) and P. vivax. Patient-derived malarial parasites were directly processed and analyzed using shotgun proteomics approach using high-sensitivity MS for protein identification. Our study revealed about 100 parasite-coded gene products that included many known drug targets such as Pf hypoxanthine guanine phosphoribosyl transferase, Pf L-lactate dehydrogenase, and Plasmepsins. In addition,our study reports the expression of several parasite proteins in clinical ring stages that have never been reported in the ring stages of the laboratory-cultivated parasite strain. This proof-of-principle study represents a noteworthy step forward in our understanding of pathways elaborated by the parasite within the malaria patient and will pave the way towards identification of new drug and vaccine targets that can aid malaria therapy.
Resumo:
The biosynthesis of β-N-oxalyl-l-α,β-diaminopropionic acid (ODAP) the Lathyrus sativus neurotoxin has been found to follow the scheme depicted below: {A figure is presented}. The first reaction is catalysed by oxalyl-CoA synthetase which has properties similar to that of the enzyme in peas. The second reaction is catalysed by another enzyme which is specific to L. sativus and is designated as oxalyl-CoA-α,β-diaminopropionic acid oxalyl transferase. The enzymes have been purified by about 60-fold and their properties studied. A partial resolution of the two enzyme activities has been achieved using CM-sephadex columns.
Resumo:
Three direct repeats of 320, 340 and 238 nucleotides were detected upstream to the 5′ end of the 18S rRNA gene of an rDNA unit present on a 9.8 kb EcoRT fragment of the rice DNA. The primer extension analysis showed that the site of initiation of transcription is in the 1st repeat at an A, the 623rd nucleotide upstream to the 5′ end of the 18S rRNA gene. Different stretches of the intergenic spacer DNA linked to the Chloramphenicol acetyl transferase gene were transcribed in the intact nuclei of rice embryos. The S1 nuclease protection analysis of the transcripts using [32P]-labelled Chloramphenicol acetyl transferase gene as the probe showed the presence of multiple promoters for rDNA transcription.