72 resultados para interaction fungi-host cells
Resumo:
Attaching and effacing Escherichia coli (AEEC) employ type III secretion system (T3SS) to secrete effector proteins into host cells and regulate their function. Here we have investigated T3SS genes of AEEC for non-neutral evolution. Our analysis revealed non-neutral evolution in three genes (nleE1, nleB2 and nleD) which encode effector proteins. These genes are located outside the locus of enterocyte effacement (LEE). In general, non-LEE effector genes show greater deviation from neutral evolution than LEE effector genes. These results suggest that effector genes located outside LEE are under greater selection pressure than those present in LEE. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
A gene is a unit of heredity in a living organism. It normally resides on a stretch of DNA that codes for a type of protein or for an RNA chain that has a function in the organism. All living things depend on genes, as they specify all proteins and functional RNA chains. Genes hold the information to build and maintain an organism’s cells and pass genetic traits to offspring. The gene has to be transferred to bacteria or eukaryotic cells for basic and applied molecular biology studies. Bacteria can uptake exogenous genetic material by three ways: conjugation, transduction and transformation. Genetic material is naturally transferred to bacteria in case of conjugation and transferred through bacteriophage in transduction. Transformation is the acquisition of exogenous genetic material through cell wall. The ability of bacteria of being transformed is called competency and those bacteria which have competency are competent cells. Divalent Calcium ions can make the bacteria competent and a heat shock can cause the bacteria to uptake DNA. But the heat shock method cannot be used for all the bacteria. In electroporation, a brief electric shock with an electric field of 10-20kV/cmmakes pores in the cell wall, facilitates the DNA to enter into the bacteria. Microprecipitates, microinjection, liposomes, and biological vectors are also used to transfer polar molecules like DNA into host cells.
Resumo:
Intracellular pathogens such as Salmonella enterica serovar Typhimurium (S. Typhimurium) manipulate their host cells through the interplay of various virulence factors. A multitude of such virulence factors are encoded on the genome of S. Typhimurium and are usually organized in pathogenicity islands. The virulence-associated genomic stretch of STM3117-3120 has structural features of pathogenicity islands and is present exclusively in non-typhoidal serovars of Salmonella. It encodes metabolic enzymes predicted to be involved in methylglyoxal metabolism. STM3117-encoded lactoylglutathione lyase significantly impacts the proliferation of intracellular Salmonella. The deletion mutant of STM3117 (Delta lgl) fails to grow in epithelial cells but hyper-replicates in macrophages. This difference in proliferation outcome was the consequence of failure to detoxify methylglyoxal by Delta lgl, which was also reflected in the form of oxidative DNA damage and upregulation of kefB in the mutant. Within macrophages, the toxicity of methylglyoxal adducts elicits the potassium efflux channel (KefB) in the mutant which subsequently modulates the acidification of mutant-containing vacuoles (MCVs). The perturbation in the pH of the MCV milieu and bacterial cytosol enhances the Salmonella pathogenicity island 2 translocation in Delta lgl, increasing its net growth within macrophages. In epithelial cells, however, the maturation of Delta lgl-containing vacuoles were affected as these non-phagocytic cells maintain less acidic vacuoles compared to those in macrophages. Remarkably, ectopic expression of Toll-like receptors 2 and 4 on epithelial cells partially restored the survival of Delta lgl. This study identified a novel metabolic enzyme in S. Typhimurium whose activity during intracellular infection within a given host cell type differentially affected the virulence of the bacteria.
Resumo:
A safe, effective, and inexpensive vaccine against typhoid and other Salmonella diseases is urgently needed. In order to address this need, we are developing a novel vaccine platform employing buoyant, self-adjuvanting gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1, bioengineered to display highly conserved Salmonella enterica antigens. As the initial antigen for testing, we selected SopB, a secreted inosine phosphate effector protein injected by pathogenic S. enterica bacteria during infection into the host cells. Two highly conserved sopB gene segments near the 3'- region, named sopB4 and sopB5, were each fused to the grIpC gene, and resulting SopB-GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and SopB5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of SopB-GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 ApmrG-H111-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-y, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Thl response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were also found to be stable at elevated temperatures for extended periods without refrigeration. The results show that bioengineered GVNPs are likely to represent a valuable platform for antigen delivery and development of improved vaccines against Salmonella and other diseases.
Resumo:
Peptide metabolism forms an important part of the metabolic network of Salmonella and to acquire these peptides the pathogen possesses a number of peptide transporters. Whilst various peptide transporters known in Salmonella are well studied, very little is known about the carbon starvation (cst) genes cstA and yjiY, which are also predicted to be involved in peptide metabolism. We investigated the role of these genes in the metabolism and pathogenesis of Salmonella, and demonstrated for the first time, to the best of our knowledge, that cst genes actually participate in transport of specific peptides in Salmonella. Furthermore, we established that the carbon starvation gene yjiY affects the expression of flagella, leading to poor adhesion of the bacterium to host cells. In contrast to the previously reported role of cstA in virulence of Salmonella in Caenorhabditis elegans, we showed that yjiY is required for successful colonization of Salmonella in the mouse gut. Thus, cst genes not only contribute to the metabolism of Salmonella, but also influence its virulence.
Resumo:
Peptide metabolism forms an important part of the metabolic network of Salmonella and to acquire these peptides the pathogen possesses a number of peptide transporters. Whilst various peptide transporters known in Salmonella are well studied, very little is known about the carbon starvation (cst) genes cstA and yjiY, which are also predicted to be involved in peptide metabolism. We investigated the role of these genes in the metabolism and pathogenesis of Salmonella, and demonstrated for the first time, to the best of our knowledge, that cst genes actually participate in transport of specific peptides in Salmonella. Furthermore, we established that the carbon starvation gene yjiY affects the expression of flagella, leading to poor adhesion of the bacterium to host cells. In contrast to the previously reported role of cstA in virulence of Salmonella in Caenorhabditis elegans, we showed that yjiY is required for successful colonization of Salmonella in the mouse gut. Thus, cst genes not only contribute to the metabolism of Salmonella, but also influence its virulence.
Resumo:
Interferon-gamma (Ifn gamma), a key macrophage activating cytokine, plays pleiotropic roles in host immunity. In this study, the ability of Ifn gamma to induce the aggregation of resident mouse adherent peritoneal exudate cells (APECs), consisting primarily of macrophages, was investigated. Cell-cell interactions involve adhesion molecules and, upon addition of Ifn gamma, CD11b re-localizes preferentially to the sites of interaction on APECs. A functional role of CD11b in enhancing aggregation is demonstrated using Reopro, a blocking reagent, and siRNA to Cd11b. Studies with NG-methyl-L-arginine (LNMA), an inhibitor of Nitric oxide synthase (Nos), NO donors, e.g., S-nitroso-N-acetyl-DL-penicillamine (SNAP) or Diethylenetriamine/ nitric oxide adduct (DETA/NO), and Nos2(-/-) mice identified Nitric oxide (NO) induced by Ifn gamma as a key regulator of aggregation of APECs. Further studies with Nos2(-/-) APECs revealed that some Ifn. responses are independent of NO: induction of MHC class II and CD80. On the other hand, Nos2 derived NO is important for other functions: motility, phagocytosis, morphology and aggregation. Studies with cytoskeleton depolymerizing agents revealed that Ifn gamma and NO mediate the cortical stabilization of Actin and Tubulin which contribute to aggregation of APECs. The biological relevance of aggregation of APECs was delineated using infection experiments with Salmonella Typhimurium (S. Typhimurium). APECs from orally infected, but not uninfected, mice produce high amounts of NO and aggregate upon ex vivo culture in a Nos2-dependent manner. Importantly, aggregated APECs induced by Ifn gamma contain fewer intracellular S. Typhimurium compared to their single counterparts post infection. Further experiments with LNMA or Reopro revealed that both NO and CD11b are important for aggregation; in addition, NO is bactericidal. Overall, this study elucidates novel roles for Ifn gamma and Nos2 in regulating Actin, Tubulin, CD11b, motility and morphology during the aggregation response of APECs. The implications of aggregation or ``group behavior'' of APECs are discussed in the context of host resistance to infectious organisms.
Resumo:
Intravenous immunoglobulin (IVIg) is widely used to treat autoimmune diseases. Several mutually nonexclusive mechanisms are proposed to explain the beneficial effects of IVIg in patients (1, 2). Lately, Ravetch and colleagues (3) demonstrate that anti-inflammatory activity of IVIg is mediated mainly by antibodies that contain terminal _2,6-sialic acid linkages at the Asn297-linked glycan of Fc region.
Resumo:
ErbB3 binding protein Ebp1 has been shown to downregulate ErbB3 receptor-mediated signaling to inhibit cell proliferation. Rinderpest virus belongs to the family Paramyxoviridae and is characterized by the presence of a non-segmented negative-sense RNA genome. In this work, we show that rinderpest virus infection of Vero cells leads to the down-regulation of the host factor Ebp1, at both the mRNA and protein levels. Ebp1 protein has been shown to co-localize with viral inclusion bodies in infected cells, and it is packaged into virions, presumably through its interaction with the N protein or the N-RNA itself. Overexpression of Ebp1 inhibits viral transcription and multiplication in infected cells, suggesting that a mutual antagonism operates between host factor Ebp1 and the virus.
Resumo:
The complex web of interactions between the host immune system and the pathogen determines the outcome of any infection. A computational model of this interaction network, which encodes complex interplay among host and bacterial components, forms a useful basis for improving the understanding of pathogenesis, in filling knowledge gaps and consequently to identify strategies to counter the disease. We have built an extensive model of the Mycobacterium tuberculosis host-pathogen interactome, consisting of 75 nodes corresponding to host and pathogen molecules, cells, cellular states or processes. Vaccination effects, clearance efficiencies due to drugs and growth rates have also been encoded in the model. The system is modelled as a Boolean network. Virtual deletion experiments, multiple parameter scans and analysis of the system's response to perturbations, indicate that disabling processes such as phagocytosis and phagolysosome fusion or cytokines such as TNF-alpha and IFN-gamma, greatly impaired bacterial clearance, while removing cytokines such as IL-10 alongside bacterial defence proteins such as SapM greatly favour clearance. Simulations indicate a high propensity of the pathogen to persist under different conditions.
Resumo:
The complex web of interactions between the host immune system and the pathogen determines the outcome of any infection. A computational model of this interaction network, which encodes complex interplay among host and bacterial components, forms a useful basis for improving the understanding of pathogenesis, in filling knowledge gaps and consequently to identify strategies to counter the disease. We have built an extensive model of the Mycobacterium tuberculosis host-pathogen interactome, consisting of 75 nodes corresponding to host and pathogen molecules, cells, cellular states or processes. Vaccination effects, clearance efficiencies due to drugs and growth rates have also been encoded in the model. The system is modelled as a Boolean network. Virtual deletion experiments, multiple parameter scans and analysis of the system's response to perturbations, indicate that disabling processes such as phagocytosis and phagolysosome fusion or cytokines such as TNF-alpha and IFN-gamma, greatly impaired bacterial clearance, while removing cytokines such as IL-10 alongside bacterial defence proteins such as SapM greatly favour clearance. Simulations indicate a high propensity of the pathogen to persist under different conditions.
Resumo:
Whether HIV-1 evolution in infected individuals is dominated by deterministic or stochastic effects remains unclear because current estimates of the effective population size of HIV-1 in vivo, N-e, are widely varying. Models assuming HIV-1 evolution to be neutral estimate N-e similar to 10(2)-10(4), smaller than the inverse mutation rate of HIV-1 (similar to 10(5)), implying the predominance of stochastic forces. In contrast, a model that includes selection estimates N-e>10(5), suggesting that deterministic forces would hold sway. The consequent uncertainty in the nature of HIV-1 evolution compromises our ability to describe disease progression and outcomes of therapy. We perform detailed bit-string simulations of viral evolution that consider large genome lengths and incorporate the key evolutionary processes underlying the genomic diversification of HIV-1 in infected individuals, namely, mutation, multiple infections of cells, recombination, selection, and epistatic interactions between multiple loci. Our simulations describe quantitatively the evolution of HIV-1 diversity and divergence in patients. From comparisons of our simulations with patient data, we estimate N-e similar to 10(3)-10(4), implying predominantly stochastic evolution. Interestingly, we find that N-e and the viral generation time are correlated with the disease progression time, presenting a route to a priori prediction of disease progression in patients. Further, we show that the previous estimate of N-e>10(5) reduces as the frequencies of multiple infections of cells and recombination assumed increase. Our simulations with N-e similar to 10(3)-10(4) may be employed to estimate markers of disease progression and outcomes of therapy that depend on the evolution of viral diversity and divergence.
Resumo:
Japanese encephalitis virus (JEV) envelope (E) protein has been shown to play a critical role in attachment to cells. However, the receptor interacting with envelope protein has not been conclusively identified. Using mouse neuroblastoma (Neuro2a) cells and purified JEV-E protein in `Virus Overlay Protein Binding Assay' followed by MALDI-TOF analysis, we identified `heat shock protein 70' (Hsp70) as a possible receptor for JEV. Indirect immunofluorescence and flow-cytometry analysis demonstrated localization of Hsp70 on Neuro2a cell surface. Co-immunoprecipitation followed by Western blot analysis reconfirmed the interaction between Hsp70 and JEV-E protein. Further, anti-Hsp70 polyclonal-antibodies were able to block JEV entry into Neuro2a cells. Additionally, using the bioinformatic tool - FTDOCK, clocking between the proteins was performed. Amongst six interacting structural poses studied one pose involving RGD motif on JEV-E and leucine(539) on Hsp70 displayed stable interaction. These observations indicate that Hsp70 serves as putative receptor for JEV in Neuro2A cells.
Resumo:
Antisera (a/s) raised to individual α- and β-subunits of human chorionic gonadotropin (hCG) have been characterized for specificity using immunoaffinity procedures and used to study the disposition of the two subunits when intact hCG is complexed with luteinizing hormone (LH) receptor of the Leydig cells. Three kinds of experiments were done. (a) The ability of the preformed hormone-antibody (H-Ab) complex to bind to receptor and stimulate a response; (b) the ability of the a/s to dissociate hCG from its complex with the receptor and thereby terminate response; and (c) the ability of the premixed antibody and receptor to compete for binding of labeled hCG. Although the subunit specific a/s used here were equipotent in binding hCG (capacity to bind and Ka being very similar), their behavior once the receptor preparation or Leydig cell is introduced into the system was drastically different. The β-subunit antibody relative to the α-subunit antibody, appeared to be poorly effective in preventing hCG from either binding to the receptor or inhibiting the continuation of response. The results suggest that hCG upon interaction with the receptor loses the determinants specific to the β-region more rapidly compared to those specific to the α-region suggesting thereby that the initial interaction of hCG with the receptor should be occurring through sites in the β-subunit. Although the α-subunit portion of the hCG molecule is available for binding to the antibody for a relatively longer time, the biological response of the cell seems very sensitive to such binding with the antibody as it invariably results in loss of response. In the Leydig cell system, the ability of the a/s to bind hCG that is already complexed to the receptor appears to be dependent upon the time of addition of the antibody to the incubation medium. The antisera were totally ineffective in inhibiting steroidogenic response to hCG if added 60 min after addition of hCG. This would suggest that the hormone-receptor complex once formed perhaps continues to change its orientation with the result that with time relatively less and less of antigenic determinants become available for antibody binding.
Resumo:
DNA-, RNA- and protein synthesis have been studied inMycobacterium smegmatis cells infected with phage 13. The macromolecular synthesis continued until the end of latent period. Early RNA and protein synthesis were necessary prior to the commencement of DNA replication. The infecting phage DNA sedimented as larger than unit length of genome, after initiation of DNA synthesis. Although the host DNA was not degraded, 90 percent of the RNA synthesized after phage infection hybridized to phage DNA.