33 resultados para in segregation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grain size has marked effects on charge-ordering and other properties of Nd(0.5)A(0.5)MnO(3) (A=Ca or Sr). Thus, the anti-ferromagnetic (AFM) transition in Nd0.5Ca0.5MnO3 is observed distinctly only in samples sintered at 1273 K or higher. The sample with a small grain size (sintered at 1173 K) shows evidence for greater ferromagnetic (FM) interaction at low temperatures, probably due to phase segregation. The FM transition as well as the charge-ordering transition in Nd0.5Sr0.5MnO3 becomes sharper in samples sintered at 1273 K or higher. The sample sintered at 1173 K does not show the AFM-CO transition around 150 K and is FM down to low temperatures; the apparent T-c-T-co gap decreases with the increase in the grain size. The samples sintered at lower temperatures (<1673 K) show evidence for greater segregation of the AFM and FM domains. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(La0.667Ca0.333Mn1-xMO3-delta)-O-x (M = Mg, Li or Re) exhibit insulating behaviour and nonlinear current-voltage (J-E) relationship with voltage-limiting characteristics at temperatures below the ferromagnetic transition (T-c). The high current region is set in at field strengths <60 V/cm. Nonlinearity exponent, alpha in the relation J = kE(alpha) increases inversely with temperature. In presence of an external magnetic field, the J-E curves show higher current density at lower field strengths. Microstructural studies indicate that there is no segregation of secondary phases in the grain boundary regions. There is remarkable changes in p(T) as well as J-E curves with the grain size. Annealing studies in lower p(O2) atmospheres indicate that there is significant out-diffusion of oxygen ions through the grain boundary layer (GBL) regions creating oxygen vacancies in the GBL regions. The concentration of Mn4+ ions is lowered at the GBL due to oxygen vacancies, reducing the probability of hopping and resulting in insulating behaviour. Therefore an insulating barrier is introduced between two conducting grains and the carrier motion between the grains is inhibited. Thus below T-c, where sufficient increase in resistivity is observed the conduction may be arising as a result of spin dependent tunneling across the barrier. External electric field lowers the barrier height and establishes carrier transport across the barrier. Above certain field strength, barrier height diminishes significantly and thereby allowing large number of carriers for conduction, giving rise to highly nonlinear conductivity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic approach is developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. The problem formulation and description of boundary conditions are kept fairly general, so that a large class of problems can be addressed. Analysis of the momentum equations coupled with phase change considerations leads to the establishment of an advection velocity scale. Analysis of the energy equation leads to an estimation of the solid layer thickness. Different regimes corresponding to different dominant modes of transport are simultaneously identified. A comparative study involving several cases of possible thermal boundary conditions is also performed. Finally, a scaling analysis of the species conservation equation is carried out, revealing the effect of a non-equilibrium solidification model on solute segregation and species distribution. It is shown that non-equilibrium effects result in an enhanced macrosegregation compared with the case of an equilibrium model. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, a single-phase, one-domain macroscopic model is developed for studying binary alloy solidification with moving equiaxed solid phase, along with the associated transport phenomena. In this model, issues such as thermosolutal convection, motion of solid phase relative to liquid and viscosity variations of the solid-liquid mixture with solid fraction in the mobile zone are taken into account. Using the model, the associated transport phenomena during solidification of Al-Cu alloys in a rectangular cavity are predicted. The results for temperature variation, segregation patterns, and eutectic fraction distribution are compared with data from in-house experiments. The model predictions compare well with the experimental results. To highlight the influence of solid phase movement on convection and final macrosegregation, the results of the current model are also compared with those obtained from the conventional solidification model with stationary solid phase. By including the independent movement of the solid phase into the fluid transport model, better predictions of macrosegregation, microstructure, and even shrinkage locations were obtained. Mechanical property prediction models based on microstructure will benefit from the improved accuracy of this model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small mammals were sampled in two natural habitats (montane stunted evergreen forests and montane grassland) and four anthropogenic habitats (tea, wattle, bluegum and pine plantation) in the Upper Nilgiris in southern India. Of the species trapped, eight were in montane evergreen forests and three were in other habitats. Habitat discrimination was studied in the rodents Rattus rattus and Mus famulus and the shrew Suncus montanus in the montane forest habitat. Multivariate tests on five variables (canopy cover, midstorey density, ground cover, tree density, canopy height) showed that R. rattus uses areas of higher tree density and lower canopy cover. Suncus montanus and M. famulus use habitat with higher tree density and ground cover and lower canopy height. Multivariate tests did not discriminate habitat use between the species. Univariate tests, however, showed that M. famulus uses areas of higher tree density than R. rattus and S. montanus. Rattus rattus was the dominant species in the montane forest, comprising 60.9% of total density, while the rodent Millardia meltada was the dominant species in the grassland. Studies of spatial interaction between these two species in habitats where they coexisted showed neither overlap nor avoidance between the species. Rattus rattus, however, did use areas of lower ground cover than did M. meltada. The analysis of spatial interactions between the species, habitat discrimination and use, and the removal experiments suggest that interspecific competition may not be a strong force in structuring these small mammal communities. There are distinct patterns in the use of different habitats by some species, but microhabitat selection and segregation is weak. Other factors such as intraspecific competition may play a more important role in these communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solubilities of common metal sulfides have been determined in the (NaCl+KCl) eutectic melt with and without Na2S. A novel gas-phase equilibrium technique has been used for PbS, Bi2S3, and So2S3, and an improved liquid phase equilibrium technique for Cu2S, which eliminates the errors due to physical entrapment of the sulfide phase and segregation on quenching, enabling precise measurements to be made. Solubilities in the (NaCl+KCl) eutectic melt were determined as a function of temperature in the rante 700° to 950°C, and were found to be small. The partial molar heats of mixing of the sulfides in the eutectic melt have been calculated from the solubility measurements, to be 13.3, 31.4, 37.1, and 49.0 kcal for PbSs), Sb2S2(l), and Cu2S(s), respectively. Sodium sulfide addition was observed to enhance these solubilities, the effect being largest for Cu2S followed by Sb2S3, Bi2S3, and PbS. This effect is explained qualitatively. It was observed that PbS and Sb2S3 obey Henry's law up to saturation in (NaCl+KCl+Na2S) melts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the self-assembly of didecyldiselenide on gold containing mercury using X-ray photoelectron spectroscopy, cyclic voltammetry and infrared spectroscopy. The analysis of intensity and chemical shift of selected Se, Hg, and Au photoelectron lines on samples with increasing Hg content, show that didecyldiselenide adsorption strongly contributed to segregation of bulk Hg to the surface. The voltammetry results support this conclusion and suggest the formation of Hg-Au surface amalgam. The Hg surface segregation effect must be related to the restructuring of the surface following initial adsorption, and to the strong selenophilicity of Hg. The reflectance absorbance infrared spectroscopy studies show that the molecular layer on Hg-Au substrates lacks good order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analogue of the green fluorescent protein (GFP) luminophore crystallizes from a methanol solution impregnated with dichloromethane, into a pair of chiral crystals. Thermal analysis, fluorescence emission studies, and crystal packing analysis show that the two crystals are different materials. The two polymorphs arise from the rotation of a monosubstituted benzene ring about a C-N bond which results in the formation of two strong bifurcated C-H center dot center dot center dot O intermolecular bonds to oxygen O(6). The color difference has been ascribed to a difference in the packing of the two crystal forms. Theoretical studies supported by low temperature NMR show low kinetic energy barriers (similar to 10 kJ mol(-1)) separating the asymmetric units of the two crystal structures, suggesting that the driving force for the polymorphism could be the result of packing of two different asymmetric units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current study, the puckering states of the Proline ring occurring in diproline segments (LPro-LPro) in proteins has been investigated with a segregation made on the basis of cis and trans states for the Pro-Pro peptide bond and the conformational states for the diproline segment to investigate the effects of conformation of the diproline segment on the corresponding puckering state of the Proline ring in the segment if any. The value of the endocyclic ring torsional angles of the pyrrolidine ring has been used for calculating and visualizing various puckering states using a proposed new sign convention (+/-) nomenclature. The results have been compared to that obtained in a previous study on peptides from this group. In this study, quite interestingly, the Planar (G) conformation that was present in 14.3% of the cases in peptides, appears to be nearly a rare conformation in the case of proteins (1.9%). The present study indicates that the (C-exo/C-exo), (C-exo/Twisted C-exo-C-endo) and (Twisted C-endo-C-exo/Twisted C-endo-C-exo) categories are the most preferred combinations. For Proline rings in proteins, the states C-exo, Twisted C-exo-C-endo and Twisted C-endo-C-exo are the most preferred states. Within diproline segments, the pyrrolidine ring conformations do not show a strong co-relation to the backbone conformation in which they are observed. It is likely that five-membered rings have a considerable plasticity of structure and are readily deformed to accommodate a variety of energetically preferred backbone conformations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoindentation technique is utilized to examine mechanical property variation in Eu doped Na0.5Bi0.5 TiO3 (NBT). Doping levels of Eu in NBT is systematically varied. Dilute doping results in a linear reduction in both modulus and hardness. At higher concentrations, a recovery of the mechanical properties (to undoped NBT values) is observed. These experimental trends mirror variations in the optical emission intensities with Eu concentration. Observed trends are rationalized on the basis of a model, which hypothesizes phase segregation beyond a critical Eu doping level. Such segregation leads to the formation of pure NBT, nano-Eu saturated NBT, and nano-mixed Eu oxides in the microstructure. Pure NBT is optically inactive, while saturated Eu:NBT is a much better emitter when compared to europium oxide. Hence beyond the critical concentration, luminescence signal comes primarily from the saturated Eu:NBT phase. The model presented is supported by nanoindentation, and spectroscopic results. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of polyesters based on 2-propargyl-1,3-propanediol or 2,2-dipropargyl-1,3-propanediol or 2-allyl-2-propargyl-1,3-propanediol and 1,20-eicosanedioic acid were prepared by solution polycondensation using the corresponding diacid chloride; these polyesters were quantitatively ``clicked'' with a fluoroalkyl, azide, namely CF3(CF2)(7)CH2CH2N3, to yield polyesters carrying long-chain alkylene segments in the backbone and either one or two perfluoroalkyl segments located at periodic intervals along the polymer chain. The immiscibility of the alkylene and fluoroalkyl segments causes the polymer chains to fold in a zigzag fashion to facilitate the segregation of these segments; the folded chains further organize in the solid state to form a lamellar structure with alternating domains of alkyl (HC) and fluoroalkyl (FC) segments. Evidence for the self-segregation is provided by DSC, SAXS, WAXS, and TEM studies; in two of the samples, the DSC thermograms showed two distinct endotherms associated with the melting of the individual domains, while the WAXS patterns confirm the existence of two separate peaks corresponding to the interchain distances within the crystalline lattices of the HC and FC domains. SAXS data, on the other hand, reveal the formation of an extended lamellar morphology with an interlamellar spacing that matches reasonably well with those estimated from TEM studies. Interestingly, a smectic-type liquid crystalline phase is observed at temperatures between the two melting transitions. These systems present a unique opportunity to develop interesting nanostructured polymeric materials with precise control over both the domain size and morphology; importantly, the domain sizes are far smaller than those typically observed in traditional block copolymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a specific kind of failure in ethylene cracking coils coated with anticoking film. It investigates a case in which the coils made of 35Cr 45Ni high temperature alloy failed within two years of operation. The damage occurred due to heavy oxidation in localized regions of the coil resulting in the formation of blisters, which eventually failed by cracking. The mechanism involved was determined by studying the oxidized samples under a scanning electron microscope with an energy dispersive system and is attributed to the presence of rare earth metals in the anti-coking film and inherent casting defects in the base alloy. The cerium present in the anti-coking film diffused preferentially to a defect site in the parent alloy thereby resulting in its segregation which further led to embrittlement. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have synthesized Ag-Cu alloy nanoparticles of four different compositions by using the laser ablation technique with the target under aqueous medium. Following this, we report a morphological transition in the nanoparticles from a normal two-phase microstructure to a structure with random segregation and finally a core shell structure at small sizes as a function of Cu concentration. To illustrate the composition dependence of morphology, we report observations carried out on nanoparticles of two different sizes: similar to 5 and similar to 20 nm. The results could be rationalized through the thermodynamic modeling of free energy of phase mixing and wettability of the alloying phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grain boundary sliding remains a dominant deformation process during creep in both nanocrystalline and submicron-grained zirconia. The level of segregation of Y to grain boundaries is reduced by a factor of similar to 2 in nanocrystals. However, a scaling relationship for compression creep was valid in a 3 mol.% yttria-stabilized tetragonal zirconia with grain sizes in the range of similar to 65-400 nm, indicating the same deformation mechanism over this range of grain sizes. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present detailed results from a molecular dynamics (MD) simulation of phase-separation kinetics in polymer mixtures. Our MD simulations naturally incorporate hydrodynamic effects. We find that polymeric phase separation (with dynamically symmetric components) is in the same universality class as segregation of simple fluids: the degree of polymerization only slows down the segregation kinetics. For d = 2 polymeric fluids, the domain growth law is L(t) similar to t(phi) with phi showing a crossover from 1/3 -> 1/2 -> 2/3. For d = 3 polymeric fluids, we see the crossover phi = 1/3 -> 1. Our MD simulations do not yet access the inertial hydrodynamic regime (with L similar to t(2/3)) of phase separation in 3-d fluids. (C) 2014 AIP Publishing LLC.