96 resultados para hydroxyl loaded alumina
Resumo:
The crucial role of the drug carrier surface chemical moeities on the uptake and in vitro release of drug is discussed here in a systematic manner. Mesoporous alumina with a wide pore size distribution (2-7 nm) functionalized with various hydrophilic and hydrophobic surface chemical groups was employed as the carrier for delivery of the model drug ibuprofen. Surface functionalization with hydrophobic groups resulted in low degree of drug loading (approximately 20%) and fast rate of release (85% over a period of 5 h) whereas hydrophilic groups resulted in a significantly higher drug payloads (21%-45%) and slower rate of release (12%-40% over a period of 5 h). Depending on the chemical moiety, the diffusion controlled (proportional to time(-0.5)) drug release was additionally observed to be dependent on the mode of arrangement of the functional groups on the alumina surface as well as on the pore characteristics of the matrix. For all mesoporous alumina systems the drug dosages were far lower than the maximum recommended therapeutic dosages (MRTD) for oral delivery. We envisage that the present study would aid in the design of delivery systems capable of sustained release of multiple drugs.
Resumo:
Batch adsorption of fluoride onto manganese dioxide-coated activated alumina (MCAA) has been studied. Adsorption experiments were carried out at various pH (3–9), time interval (0–6 h), adsorbent dose (1–16 g/l), initial fluoride concentration (1–25 mg/l) and in the presence of different anions. Adsorption isotherms have been modeled using Freundlich, Langmuir and Dubinin–Raduskevich isotherms and adsorption followed Langmuir isotherm model. Kinetic studies revealed that the adsorption followed second-order rate kinetics. MCAA could remove fluoride effectively (up to 0.2 mg/l) at pH 7 in 3 h with 8 g/l adsorbent dose when 10 mg/l of fluoride was present in 50 ml of water. In the presence of other anions, the adsorption of fluoride was retared. The mechanism of fluoride uptake by MCAA is due to physical adsorption as well as through intraparticle diffusion which was confirmed by kinetics, Dubinin–Raduskevich isotherm, zeta-potential measurements and mapping studies of energy-dispersive analysis of X-ray.
Resumo:
A new approach based on finite difference method, is proposed for the simulation of electrical conditions in a dc energized wire-duct electrostatic precipitator with and without dust loading. Simulated voltage-curren characteristics with and without dust loading were compared with the measured characteristics for analyzing the performance of a precipitator. The simple finite difference method gives sufficiently accurate results with reduced mesh size. The results for dust free simulation were validated with published experimental data. Further measurements were conducted at a thermal power plant in India and the results compares well with the measured ones.
Resumo:
Alum-impregnated activated alumina (AIAA) was investigated in the present work as an adsorbent for the removal of As(V) from water by batch mode. Adsorption study at different pH values shows that the efficiency of AIAA is much higher than as such activated alumina and is suitable for treatment of drinking water. The adsorption isotherm experiments indicated that the uptake of As(V) increased with increasing As(V) concentration from 1 to 25 mg/l and followed Langmuir-type adsorption isotherm. Speciation diagram shows that in the pH range of 2.8–11.5, arsenate predominantly exists as H2AsO4− and HAsO42− species and hence it is presumed that these are the major species being adsorbed on the surface of AIAA. Intraparticle diffusion and kinetic studies revealed that adsorption of As(V) was due to physical adsorption as well as through intraparticle diffusion. Effect of interfering ions revealed that As(V) sorption is strongly influenced by the presence of phosphate ion. The presence of arsenic on AIAA is depicted from zeta potential measurement, scanning electron microscopy (SEM) and energy-dispersive analysis of X-ray (EDAX) mapping study. Alum-impregnated activated alumina successfully removed As(V) to below 40 ppb (within the permissible limit set by WHO) from water, when the initial concentration of As(V) is 10 mg/l.
Resumo:
Effective “hydrodynamic” radii governing infiltration kinetics of reactive Al-Mg melts into alumina preforms were found to be three orders of magnitude smaller than the average pore size of the packed bed and also smaller compared with the kinetics for a nonreactive system. A sinusoidal capillary model was developed to predict flow kinetics within the packed bed. For the reactive system, two factors were ascribed for additional melt retardation: (1) different intrinsic wettabilities of the two liquids on alumina, thereby leading to significantly different “effective” local contact angles; and (2) local solute depletion from the meniscus, which was incorporated as a time-dependent contact angle.
Resumo:
An E-plane serpentine folded-waveguide slow-wave structure with ridge loading on one of its broad walls is proposed for broadband traveling-wave tubes (TWTs) and studied using a simple quasi-transverse-electromagnetic analysis for the dispersion and interaction impedance characteristics, including the effects of the beam-hole discontinuity. The results are validated against cold test measurements, an approximate transmission-line parametric analysis, an equivalent circuit analysis, and 3-D electromagnetic modeling using CST Microwave Studio. The effect of the structure parameters on widening the bandwidth of a TWT is also studied.
Resumo:
An analysis of eccentrically loaded short reinforced concrete columns using a variable failure strain criterion is presented. The method dispenses with the usual procedure of assuming a fixed value for the ultimate strain in concrete. The analysis is based on the use of a simple, single equation for the complete stress-strain curve of concrete and the adoption of a process of maximisation of moment with respect to extreme fibre concrete compressive strain. Columns of rectangular section and loaded eccentrically along one axis only are considered in this paper. A good agreement is observed between the theoretical and experimental values of some test results.
Resumo:
A homologous series of alkyl 6-deoxy-beta-D-glucopyranoside amphiphiles was prepared,in an effort to identify the role of hydroxyl group in the mesomorphic behavior of alkyl glycosides. Synthesis was performed by a chlorination of the sugar moiety in alkyl-beta-D-glucopyranosides with methylsulfonyl chloride in DMF, followed by a metal mediated dehalogenation to secure alkyl 6-deoxy-beta-D-glucopyranosides, wherein the alkyl chain length varied from C-9 to C-16. The mesomorphic behavior of these 6-deoxy alkyl glycosides was assessed using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction method. Whereas the lower homologues exhibited a monotropic SmA phase till sub-ambient temperatures, the higher homologues formed a plastic phase. A partial interdigitized bilaye structure of SmA phase is inferred from experimental d-spacing and computationally derived lengths of the molecules. The results were compared with those of normal alkyl glucopyranosides, retained with hydroxyl groups at C-2-C-6 carbons, and alkyl 2-deoxy-glucopyranosides, devoid of a hydroxyl group at C-2 and the comparison showed important differences in the mesomorphic behavior.(C)2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Thermal degradation of copolyurethanes based on hydroxyl terminated polybutadiene (HTPB) and poly(12-hydroxy stearic acid-co-TMP) ester polyol (PEP) with varying compositions has been studied by thermo-gravimetric and pyrolysis-GC techniques. The copolyurethanes were found to decompose in multiple stages and the kinetic parameters were found to be dependent on the method of their evaluation. The activation energy for the initial stage of decomposition was found to increase, and for the main stage decreases with the increase in PEP content. The pyrolysis-GC studies on the ammonium perchlorate filled copolyurethanes (solid propellants) showed that the major products during the pyrolysis were C-2, C-3 hydrocarbons and butadiene. The amount of C-2 fraction in the pyrolyslate increased with solid loading, as well as with the HTPB content in the copolyurethanes. A linear relationship apparently exists between the amount of C-2 fraction and the burn rates of the solid propellants. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Preparation of Rb-beta -alumina was realized by the gel-to-crystallite conversion method. Reaction of hydrated aluminum hydroxide gel with RbOH in ethanol medium gave rise to the Rb+-inserted pseudoboehmite precursor under wet chemical conditions. The thermal decomposition of the precursor yielded Rb-beta -alumina. The Rb2O:Al2O3 ratio of monophasic Rb-beta -alumina ranged from 1:10 to 1:22. The extended stability in the compositional range is due to the fact that the conduction planes containing Rb+ and O2- ions can have lower occupancy of Rb+ ions for larger sized alkali ions, permitting the steric separation of the adjoining spinel blocks. High-resolution electron microscopy revealed that the decreasing occupancy of alkali ions in the conduction plane is balanced by changing widths of spinel blocks arising from the shift of tetrahedral Al3+ ions to octahedral sites and an accompanying increase in stacking defects. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Polypyrrole (PPy) - multiwalled carbonnanotubes (MWCNT) nanocomposites with various MWCNT loading were prepared by in situ inversion emulsion polymerization technique. High loading of the nano filler were evaluated because of available inherent high interface area for charge separation in the nanocomposites. Solution processing of these conducting polymer nanocomposites is difficult because, most of them are insoluble in organic solvents. Device quality films of these composites were prepared by using pulsed laser deposition techniques (PLD). Comparative study of X-ray photoelectron spectroscopy (XPS) of bulk and film show that there is no chemical modification of polymer on ablation with laser. TEM images indicate PPy layer on MWCNT surface. SEM micrographs indicate that the MWCNT's are distributed throughout the film. It was observed that MWCNT in the composite held together by polymer matrix. Further more MWCNT diameter does not change from bulk to film indicating that the polymer layer remains intact during ablation. Even for very high loadings (80 wt.% of MWCNT's) of nanocomposites device quality films were fabricated, indicating laser ablation is a suitable technique for fabrication of device quality films. Conductivity of both bulk and films were measured using collinear four point probe setup. It was found that overall conductivity increases with increase in MWCNT loading. Comparative study of thickness with conductivity indicates that maximum conductivity was observed around 0.2 mu m. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A solid-state sensor for SOx (x = 2, 3) species has been designed using ?-alumina as the solid electrolyte and Na2SO4 as the auxiliary electrode. The measured e.m.f. of the cell Pt, O?2 + SO?2 + SO?3|Na2SO4short parallel?-aluminashort parallelNa2SO4|SO?3 + SO?2 + O?2, PT in the temperature range 700 K to 1150 K agrees well with values calculated using the Nernst equation. The sodium sulphate acts both as a protective covering, preventing direct access of the gaseous SOx species to the ?-alumina electrolyte, and as an auxiliary electrode, converting chemical potentials of SOx species and O2 into an equivalent sodium potential. The open-circuit e.m.f. varies non-linearly with temperature for fixed composition of inlet gas mixtures containing SO2, O2 and Ar. The response time (t0.99) of the cell varies between 1.9 ks at 750 K and 0.06 ks at 1100 K. The e.m.f. response is faster when the partial pressure of SOx at the electrode is increased than when it is decreased.