158 resultados para flow field


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The paper deals with the study of the nature of secondary flow of aRivlin-Ericksen fluid, contained between two concentric spheres, which perform oscillations about a fixed diameter. The steady part of the secondary flow is discussed in detail in the following three cases (i) the outer sphere at rest, the inner oscillating, (ii) the two spheres oscillating with the same angular velocity in the same sense and (iii) the spheres oscillating with the same angular velocity in opposite sense. In a previous paper, a similar problem was discussed for theOldroyd fluids. We find that the secondary flow is strongly dependent on the common frequency of oscillation of the two spheres and on the rotational nature of the motion for the present investigation also. Certain contrasting features of interest between the secondary flow field of the two fluids are also noted.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We consider the secondary flows arising in the motion of a Maxwell fluid between two rotating coaxial cones having the same vertex. We find that in any meridian plane passing through the common axis of the cones, the flow field is divided into two regions. Such a division of flow field was first reported by Bhatnagar and Rathna.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The near flow field of small aspect ratio elliptic turbulent free jets (issuing from nozzle and orifice) was experimentally studied using a 2D PIV. Two point velocity correlations in these jets revealed the extent and orientation of the large scale structures in the major and minor planes. The spatial filtering of the instantaneous velocity field using Gaussian convolution kernel shows that while a single large vortex ring circumscribing the jet seems to be present at the exit of nozzle, the orifice jet exhibited a number of smaller vortex ring pairs close to jet exit. The smaller length scale observed in the case of the orifice jet is representative of the smaller azimuthal vortex rings that generate axial vortex field as they are convected. This results in the axis-switching in the case of orifice jet and may have a mechanism different from the self induction process as observed in the case of contoured nozzle jet flow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Measurements of the three-dimensional flow field entering and leaving a mixed flow pump of non-dimensional specific speed k = 1.89 [N-s = 100 r/min (metric)] are discussed as a function of flowrate. Flow reversal at inlet at reduced flows is seen to result in abnormally high total pressures in the casing region, but causes no noticeable discontinuities on the head-flow characteristics. Inlet prerotation is associated with the transport of angular momentum by the reversal eddy and begins with the initiation of flow reversal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We use a path-integral approach to calculate the distribution P(w, t) of the fluctuations in the work W at time t of a polymer molecule (modeled as an elastic dumbbell in a viscous solvent) that is acted on by an elongational flow field having a flow rate (gamma) over dot. We find that P(w, t) is non-Gaussian and that, at long times, the ratio P(w, t)/ P (-w, t) is equal to expw/(k(B)T)], independent of (gamma) over dot. On the basis of this finding, we suggest that polymers in elongational flows satisfy a fluctuation theorem.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Flow of liquid/liquid dispersions have been investigated in a Hele-Shaw cell which contained a thin disk held between two parallel plates. This device offers a well defined flow field and also permits visual observation of the dispersed drop movement. The dispersed drops coalesce with the disk for the systems where the dispersed phase wets the disk surface. The dispersed phase accumulate at the downstream end of the disk and they detach from there as blobs. Through an accurate measurement of accumulated dispersed phase volume, the coalescence rate was determined. The coalescence efficiency in the Hele Shaw cell is determined by dividing the coalescence hate by the undisturbed flow rate of the dispersed phase through an area equal to the projected area of the disk on a plane normal to the flow direction. The coalescence efficiency first increases and then decreases with the flow rate of dispersion. The coalescence rate/disk dimensions increases with the decrease in the disk dimensions. The rate of coalescence increases with the increase in the dispersed drop diameter and it decreases with the increase in the continuous phase viscosity. The presence of surfactants reduces the coalescence rate. All these results are quantitatively explained through a model, which takes into account several important features like various mechanism of drainage, the roles of dispersion and continuous phase viscosities, and the drop deformation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An unsteady flow and heat transfer of a viscous incompressible electrically conducting fluid over a rotating infinite disk in an otherwise ambient fluid are studied. The unsteadiness in the flow field is caused by the angular velocity of the disk which varies with time. The magnetic field is applied normal to the disk surface. The new self-similar solution of the Navier-Stokes and energy equations is obtained numerically. The solution obtained here is not only the solution of the Navier-Stokes equations, but also of the boundary layer equations. Also, for a simple scaling factor, it represents the solution of the flow and heat transfer in the forward stagnation-point region of a rotating sphere or over a rotating cone. The asymptotic behaviour of the solution for a large magnetic field or for a large independent variable is also examined. The surface shear stresses in the radial and tangential directions and the surface heat transfer increase as the acceleration parameter increases. Also the surface shear stress in the radial direction and the surface heat transfer decrease with increasing magnetic field, but the surface shear stress in the tangential direction increases. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The flow of a stratified fluid in a channel with small and large deformations is investigated. The analogy of this flow with swirling flow in tubes with non-uniform cross-sections is studied. The flow near the wall is blocked when the Froude number takes certain critical values. The possibility of preventing the stagnation zones in the flow field is also discussed

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The unsteady rotating flow of a laminar incompressible viscous electrically conducting fluid over a rotating sphere in the vicinity of the equator has been studied. The fluid and the body rotate either in the same direction or in opposite directions. The effects of surface suction and magnetic field have been included in the analysis. There is an initial steady state that is perturbed by a sudden change in the rotational velocity of the sphere, and this causes unsteadiness in the flow field. The nonlinear coupled parabolic partial differential equations governing the boundary-layer flow have been solved numerically by using an implicit finite-difference scheme. For large suction or magnetic field, analytical solutions have also been obtained. The magnitude of the radial, meridional and rotational velocity components is found to be higher when the fluid and the body rotate in opposite directions than when they rotate in the same direction. The surface shear stresses in the meridional and rotational directions change sign when the ratio of the angular velocities of the sphere and the fluid lambda greater than or equal to lambda(0). The final (new) steady state is reached rather quickly which implies that the spin-up time is small. The magnetic field and surface suction reduce the meridional shear stress, but increase the surface shear stress in the rotational direction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An experimental study has been made of the flow field in indentation of a model granular material. A granular ensemble composed of spherical sand particles with average size of 0.4 mm is indented with a flat ended punch under plane-strain conditions. The region around the indenter is imaged in situ using a high-speed charge-coupled device (CCD) imaging system. By applying a hybrid image analysis technique to image sequences of the indentation, flow parameters such as velocity, velocity gradient, and strain rate are measured at high resolution. The measurements have enabled characterization of the main features of the flow such as dead material zones, velocity jumps, localization of deformation, and regions of highly rotational flow resembling vortices. Implications for validation of theoretical analyses and applications are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally, models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models, geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using particle image velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plastic heterogeneity in indentation is fundamental for understanding mechanics of hardness testing and impression-based deformation processing methods. The heterogeneous deformation underlying plane-strain indentation was investigated in plastic loading of copper by a flat punch. Deformation parameters were measured, in situ, by tracking the motion of asperities in high-speed optical imaging. These measurements were coupled with multi-scale analyses of strength, microstructure and crystallographic texture in the vicinity of the indentation. Self-consistency is demonstrated in description of the deformation field using the in situ mechanics-based measurements and post-mortem materials characterization. Salient features of the punch indentation process elucidated include, among others, the presence of a dead-metal zone underneath the indenter, regions of intense strain rate (e. g. slip lines) and extent of the plastic flow field. Perhaps more intriguing are the transitions between shear-type and compression-type deformation modes over the indentation region that were quantified by the high-resolution crystallographic texture measurements. The evolution of the field concomitant to the progress of indentation is discussed and primary differences between the mechanics of indentation for a rigid perfectly plastic material and a strain-hardening material are described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents experimental and computational results of oxy-fuel burner operating on classical flame and lameless mode for heat release rate of 26 kW/m3. The uniqueness of the burner arises from a slight asymmetric injection of oxygen at near sonic velocities. Measurements of emperature, species, total heat flux, radiative heat flux and NOx emission were carried out inside the furnace and the flow field was computationally analyzed. The flame studies were carried out for coaxial flow of oxygen and fuel jets with similar inlet velocities. This configuration results in slow mixing between fuel and oxygen and the flame is developed at distance away from the burner and the flame is bright/white in colour. In the flameless mode a slight asymmetric injection of the high velocity oxygen jet leads to a large asymmetric recirculation pattern with the recirculation ratio of 25 and the resulting flame is weak bluish in colour with little soot and acetylene formation. The classical flame in comparison is characterised by soot and acetylene formation, higher NOx and noise generation. The distribution of temperature and heat flux in the furnace is more uniform with flameless mode than with flame mode.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The coalescence of nearly rigid liquid droplets in a turbulent flow field is viewed as the drainage of a thin film of liquid under the action of a stochastic force representing the effect of turbulence. The force squeezing the drop pair is modelled as a correlated random function of time. The drops are assumed to coalesce once the film thickness becomes smaller than a critical thickness while they are regarded as separated if their distance of separation is larger than a prescribed distance. A semi-analytical solution is derived to determine the coalescence efficiency. The veracity of the solution procedure is established via a Monte-Carlo solution scheme. The model predicts a reversing trend of the dependence of the coalescence efficiency on the drop radii, the film liquid viscosity and the turbulence energy dissipation per unit mass, as the relative fluctuation increases. However, the dependence on physical parameters is weak (especially at high relative fluctuation) so that for the smallest droplets (which are nearly rigid) the coalescence efficiency may be treated as an empirical constant. The predictions of this model are compared with those of a white-noise force model. The results of this paper and those in Muralidhar and Ramkrishna (1986, Ind. Engng Chem. Fundam. 25, 554-56) suggest that dynamic drop deformation is the key factor that influences the coalescence efficiency.