40 resultados para brain atrophy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidation of NADH by rat brain microsomes was stimulated severalfold on addition of vanadate. During the reaction, vanadate was reduced, oxygen was consumed, and H2O2 was generated with a stoichiometry of 1:1 for NADH/O2, as in the case of other membranes. Extra oxygen was found to be consumed over that needed for H2O2 generation specifically when brain microsomes were used. This appears to be due to the peroxidation of lipids known to be accompanied by a large consumption of oxygen. Occurrence of lipid peroxidation in brain microsomes in the presence of NADH and vanadate has been demonstrated. This activity was obtained specifically with the polymeric form of vanadate and with NADH, and was inhibited by the divalent cations Cu2+, Mn2+, and Ca2+, by dihydroxy-phenolic compounds, and by hemin in a concentration-dependent fashion. In the presence of a small concentration of vanadate, addition of an increasing concentration of Fe2+ gave increasing lipid peroxidation. After undergoing lipid peroxidation in the presence of NADH and vanadate, the binding of quinuclidinyl benzylate, a muscarinic antagonist, to brain membranes was decreased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Phospholipid content of brains of 3- or 8-week-old undernourished rats was 7--9% less than that for the corresponding control animals and this deficit could not be made up by rehabilitation. Phosphatidyl ethanolamine and plasmalogen were the components most affected in brains of undernourished rats. 2. Incorporation of 32P into phospholipids by brain homogenates was 28% higher in 3-week-old undernourished rats. It is suggested that enhanced phospholipid metabolism in undernourished animals may be related to behavioural alterations noted previously (Sobotka, Cook & Brodie, 1974). 3. Ganglioside concentrations in 3- and 8-week-old undernourished animals were 14% and 11.5% less respectively than those of the control animals and this difference could be made up by rehabilitation. [14C]Glucosamine incorporation in vivo into brain gangliosides was not affected by undernutrition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenyl and phenolic acids are known to inhibit metabolism of mevalonate in rat brain. The site of inhibition has been found to be mevalonate-5-pyrophosphate decarboxylase. Phenolic acids also inhibited mevalonate-5-phosphate kinase on preincubation. The kinetics showed that p-coumaric acid and isoferulic acid were competing with substrates, mevalonate-5-phosphate or mevalonate-5-pyre phosphate, whereas others showed an uncompetitive type of inhibition. Chlorophenoxyisobutyrate, a hypocholesterolaemic drug, had no effect on these enzymes. An improved method for the synthesis of mevalonate-5-phosphate and mevalonate-5-pyrophosphate, labeled at carbon-1, is described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional (3D) NMR solution structure (MeOH) of the highly hydrophobic δ-conotoxin δ-Am2766 from the molluscivorous snail Conus amadis has been determined. Fifteen converged structures were obtained on the basis of 262 distance constraints, 25 torsion-angle constraints, and ten constraints based on disulfide linkages and H-bonds. The root-mean-square deviations (rmsd) about the averaged coordinates of the backbone (N, Cα, C) and (all) heavy atoms were 0.62±0.20 and 1.12±0.23 Å, respectively. The structures determined are of good stereochemical quality, as evidenced by the high percentage (100%) of backbone dihedral angles that occupy favorable and additionally allowed regions of the Ramachandran map. The structure of δ-Am2766 consists of a triple-stranded antiparallel β-sheet, and of four turns. The three disulfides form the classical ‘inhibitory cysteine knot’ motif. So far, only one tertiary structure of a δ-conotoxin has been reported; thus, the tertiary structure of δ-Am2766 is the second such example.Another Conus peptide, Am2735 from C. amadis, has also been purified and sequenced. Am2735 shares 96% sequence identity with δ-Am2766. Unlike δ-Am2766, Am2735 does not inhibit the fast inactivation of Na+ currents in rat brain Nav1.2 Na+ channels at concentrations up to 200 nM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuronal sodium channels are responsible for the rising phase of action potential and are composed of three subunits, of which the alpha-subunit has been shown to be adequate for most of its functional properties. We have stably expressed the rat brain type IIA sodium channel alpha-subunit in CHO cell tine using a CMV promoter-based vector. The expression was confirmed by detecting a 6.5 kb RNA corresponding to sodium channel alpha-subunit using Northern hybridization. The cells stably expressing the alpha-subunit, yield isolated sodium currents of amplitudes greater than 4nA when studied in whole-cell configuration of the patch-clamp technique. The sodium currents are characterized by activation and inactivation properties similar to neuronal sodium channels, and are blocked by the voltage gated sodium channel blocker tetrodotoxin (TTX).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study deals with the in vitro and in vivo effects of methyl isocyanate (MIC) on rat brain mitochondrial function. Addition of MIC to tightly coupled brain mitochondria in vitro resulted in a mild stimulation of state 4 respiration, abolition of respiratory control, decrease in ADP/0 ratio, and inhibition of state 3 oxidation. The oxidation of NAD+-linked substrates (glutamate + malate) was more sensitive (fourfold) to the inhibitory action of MIC than succinate while cytochrome oxidase was unaffected. Administration of MIC subcutaneously at a lethal dose affected respiration only with glutamate + malate as the substrate (site I) and caused a 20% decrease in state 3 oxidation leading to a significant decrease in respiratory control index while state 4 respiration and ADP/O ratio remained unaffected. As both the malondialdehyde and iron contents of brain mitochondria were not altered, it may be inferred that the observed in vivo inhibition of state 3 oxidation is induced by MIC through systemic stagnant hypoxia leading to ischemia of brain, which further contributes to the cerebral hypoxia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of docosahexaenoic acid (DHA) on the diacylglycerol kinase (DG kinase) activity in rat brain membranes was investigated. DHA at 500 mu M concentration, stimulated the enzyme activity by about 2 fold. This effect was concentration-and time-dependent and was observed after very short periods of incubation (one min). DHA stimulation of DG kinase was observed only with rat brain membranes, and not with rat brain cytosol or rat liver membranes. Treating the rat brain membranes with phospholipase A(2) which released free fatty acids including DHA, significantly stimulated the DG kinase activity. It is concluded that DHA through its stimulatory effect on DG kinase may regulate the signalling events in growth-related situations in the brain such as synaptogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulator models that integrate incoming sensory information into motor plans provide a robust framework to understand decision making. However, their applicability to situations that demand a change of plan raises an interesting problem for the brain. This is because interruption of the current motor plan must occur by a competing motor plan, which is necessarily weaker in strength. To understand how changes of mind get expressed in behavior, we used a version of the double-step task called the redirect task, in which monkeys were trained to modify a saccade plan. We microstimulated the frontal eye fields during redirect behavior and systematically measured the deviation of the evoked saccade from the response field to causally track the changing saccade plan. Further, to identify the underlying mechanisms, eight different computational models of redirect behavior were assessed. It was observed that the model that included an independent, spatially specific inhibitory process, in addition to the two accumulators representing the preparatory processes of initial and final motor plans, best predicted the performance and the pattern of saccade deviation profile in the task. Such an inhibitory process suppressed the preparation of the initial motor plan, allowing the final motor plan to proceed unhindered. Thus, changes of mind are consistent with the notion of a spatially specific, inhibitory process that inhibits the current inappropriate plan, allowing expression of the new plan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is increasingly being recognized that resting state brain connectivity derived from functional magnetic resonance imaging (fMRI) data is an important marker of brain function both in healthy and clinical populations. Though linear correlation has been extensively used to characterize brain connectivity, it is limited to detecting first order dependencies. In this study, we propose a framework where in phase synchronization (PS) between brain regions is characterized using a new metric ``correlation between probabilities of recurrence'' (CPR) and subsequent graph-theoretic analysis of the ensuing networks. We applied this method to resting state fMRI data obtained from human subjects with and without administration of propofol anesthetic. Our results showed decreased PS during anesthesia and a biologically more plausible community structure using CPR rather than linear correlation. We conclude that CPR provides an attractive nonparametric method for modeling interactions in brain networks as compared to standard correlation for obtaining physiologically meaningful insights about brain function.